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Abstract

The HMAX model is a biologically motivated architecture for computer vision whose components are
in close agreement with existing physiological evidence. The model is capable of achieving close to human
level performance on several rapid object recognition tasks. However, the model is computationally
bound and has limited engineering applications in its current form. In this report, we present several
approximations in order to increase the efficiency of the HMAX model. We outline approximations at
several levels of the hierarchy and empirically evaluate the trade-offs between efficiency and accuracy.
We also explore ways to quantify the representation capacity of the model.

1 Introduction

The HMAX model is a biologically motivated model that mimics the organization of the first few stages
for the human visual pathway. More specifically, it tries to explain the purely feed forward mechanism for
rapid object recognition that occurs in the first 100-150ms of visual processing. The model is organized
with alternating layers consisting of simple(S) units and complex(C) units (See Figure 1). S units have
specific preferred input patterns (such as oriented lines) and perform simple pattern matching. Complex
units spatially pool the outputs from the S units and select the maximum, thus providing spatial invariance.
Complexity of the preferred input to the S units and the degree of location and scale invariance achieved
at the C units increases as we move up the hierarchy. The model requires very few training examples and
competes with the state-of-the-art system in object recognition task. A detailed description of the HMAX
model can be found in [2]. While the HMAX model is surprisingly accurate and a biologically faithful, it is
currently bounded by computation and is not very useful for real-life application. In this report, we study
a specific instantiation of the model, with two S,C layer pairs [4] that simulate visual processing in area
V1/V2-V4/PIT.

1.1 Computational Complexity

• S1 layer: The S1 layer computation consists of performing normalized cross correlation between a
bank of 64 gabor filters (16 scales and 4 directions, Figure 2) and the image. This operation is non-
linear and has a computational complexity of O(N2M2), where M × M is the size of the filter and
N ×N is the size of the image.

• C1 layer: The C1 layer is computed by performing a spatial and scale-level max pooling operation
on the S1 outputs.The computational cost of this operation is O(N2M), since max operation can be
performed in a separable fashion (x direction first and then y direction). In the current instantiation,
the C1 layer consists of 8 bands of pooling.

∗The quantitative evaluations were done during Oct 2007 and may not reflect state-of-the-art in HMAX
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Figure 1: HMAX Model Architecture. S1 layers consists of simple gabor filter at several scales and ori-
entation. C1 pools the filter outputs spatially and across adjacent scales. S2 is tuned to conjunctions of
orientations. C2 provides further spatial and scale invariance. The C2 outputs are directly fed to a classifier

• S2 layer: During training, several hundred C1 patches of different sizes are randomly selected from the
training images and serve as prototype features that represent a single object (class specific dictionary)
or all objects (universal dictionary) [3]. Each S2 unit is designed to detect the presence of the prototype
within the C1 unit responses. Each patch serves as a filter that is correlated with the 8 C1 bands to
generate a tuning response map. Deriving the S2 unit outputs is the most computationally intensive
part of the model, involving O(PN2M2) computation. Here P represents the number of patches.

• C2 layer: The C2 layer provides the final invariance by detecting the maximum response of the
corresponding S2 units over all scales and positions. There are as many C2 units as the number of
patches in the representation dictionary. The computational complexity of this step is O(N2MP ).

1.2 Approximations

In this report, we study several approximations to this hierarchical model. The approximations can be cate-
gorized based on which layer of the hierarchy does it effect or more logically on the nature of approximations
as outlined in the following sections.

• Approximating the filters (S1)

• Approximating the features (S2)

• Approximating the outputs (C2)
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Figure 2: Bank of gabor filters used to compute S1 features. The receptive fields sizes and other parameters
are outlined in [3].

2 Approximations at the S1 Layer

The S1 layer is obtained by performing pattern matching with short lines at several different scales and
orientations. The oriented lines are modeled as anisotropic Gabor filters given by,

G(x, y) = exp
(
−u2 + γv2

2σ2

)
× cos

(
2π

λ

)
(1)

where,
(

u
v

)
=

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)(
x
y

)
(2)

Here γ represents the eccentricity/anisotropy of the filter, θ is the orientation and λ is the wavelength of the
filter. S1 unit response S1(s, d) at scale s and direction d is computed using a normalized cross correlation
operation

S1(s,d)(x, y) =
Ĝ(x, y, θ) ∗ I(x, y)
I2(x, y) ∗H(x, y)

(3)

Here Ĝ is the zero mean,unit normal version of the filter and H(x, y) a filter with all ones and the same size
as the Gabor filter.

2.1 Separable Filters

As indicated before, the complexity of this operation is O(N2M2), where M ×M is the size of the filter and
N ×N is the size of the image. If the filter G(x,y) was separable (G(x, y) = g(x)h(y)), then we could have
replace the point wise 2D convolution, with two 1D convolutions corresponding to convolution by g(x) in
the x-direction and h(y) in the y direction. Separable convolution reduces the complexity from O(N2M2)
to O(N2M) providing substantial saving when the filter size is large. In order to reduce the complexity of
computation in the S1 layer, we make the anisotropic Gabor filters separable by approximating them using
its isotropic (γ = 1,circular) version. Consider the complex version of the Gabor filter given by,

G(x, y) = exp
(
−u2 + v2

2σ2

)
× cos

(
2π

λ

)
(4)

= exp
(
−x2 + y2

2σ2

)
× cos

(
2π

λ
(x cos(θ) + y sin(θ))

)
(5)

= Re {f(x)g(y)} (6)

f(x) = exp
(
− x2

2σ2

)
× exp(ix cos(θ)) (7)
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Figure 3: The figure shows f(x) and g(y) and their product. It can be seen that it approximates the oriented
gabor filter fairly well

g(y) = exp
(
− y2

2σ2

)
× exp(iy sin(θ)) (8)

(9)

The convolution can now be done in a separable fashion by first convolving in the x-direction with f(x)
and then convolving the result with g(y) in the y-direction. More formally, result can now be expressed as

I(x, y) ∗G(x, y) = I(x, y) ∗ f(x)δ(y) ∗ g(y)δ(x) (10)

The cost of normalized cross correlation is now O(cN2M), c = 8, due to complex valued arithmetic. However,
the cost of complex computations is offset by the gain obtained by separability.

2.2 SVD Approximations

One of the problems with separable filtering is convolution in the complex domain. While there are several
libraries and implementation with efficient and hardware accelerated implementations of real valued 2D
convolution, As an alternative approximation, We can treat the anisotropic Gabor filter G(x,y) as a two
dimensional matrix that has a low rank, since the filter is fairly smooth at lower frequencies. Singular value
decomposition can then be used in order to decompose the filter into a linear sum of real separable filters.
More specifically, using SVD, we obtain

G = USV T (11)

G(x, y) ≈
K∑

i=1

siui(y)vi(x) (12)

Here, ui, vi are the columns of the orthogonal matrices U,V. si is the singular value. The convolution of
the filter G(x, y) with the image I(x, y) can now be approximated using,

I(x, y) ∗G(x, y) ≈ I(x, y) ∗
K∑

i=1

siui(y)vi(x) (13)

=
K∑

i=1

siI(x, y) ∗ (ui(y)vi(x)) (14)

=
K∑

i=1

siI(x, y) ∗ (ui(y)δ(x)) ∗ (vi(x)δ(y)) (15)

The cost of convolution is now reduced to O(KN2M). In practice, K < 4 captures almost all the structure
of the filter and hence offers better efficiency than the complex separable filter.Figure 4 shows the successive
approximations achieved over a set of filters.
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Figure 4: Successive approximations obtained through singular value decomposition

2.3 Box Filters

While the separable and SVD approximations reproduce the gabor filter, in this section we attempt to perform
a grosser approximation of the filter to achieve significantly higher efficiency. Currently, the S1 layer in the
model, consists of simple line detectors that are modeled using oriented Gabor filters. However, oriented
lines can be represented using much simpler represented such as box filters as shown in Figure 5. These
filters have very sparse derivatives allowing us to compute convolution quite efficiently. The convolution of
the image with the filters B(x, y) can be efficiently computed using the filter’s derivatives as follows

I(x, y) ∗B(x, y) =
∂2B(x, y)

∂x∂y
∗

∫ ∫
I(x, y) (16)

The second derivative of the box filter consists of just impulses and therefore needs to be evaluated at only
four points for every position in the image. The integral image can also be efficiently computed using single
pass algorithm as outlined in [5, 1]. The cost of convolution using this approximation is O(N2c), c=4.
Unlike other approximations, the computational cost does not depend on the size of the filter at all!

Figure 5: Box filter approximations for the oriented gabor filters and its derivatives
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Image size (H ×W ) Baseline Separable SVD Box Filter
100× 100 1.0900(0.32) 0.7826(0.3172) 0.4482(0.3197) 0.3908(0.3047)
128× 128 1.8090(0.4589) 1.5360(0.4568) 0.8445(0.4546) 0.5943(0.4450)
256× 256 7.406(1.4424) 8.0517(1.4315) 4.2913(1.4268) 2.3997(1.4403)
512× 512 31.2756(5.6481) 54.4857(5.5903) 30.0797(5.5774) 10.4270(5.6270)
640× 480 37.840(6.5804) 85.277(6.5426) 47.6650(6.4964) 11.539(6.580)

Table 1: Timing comparisons for different S1 approximations. The C1 timings are almost the same for all
cases and are shown in parenthesis.All units are in seconds.

.

Approximation Accuracy Std. Dev
Baseline 39.034% 0.44%
Separable 39.4920% 0.91%

SVD 39.6980% 0.91%
Box Filter 34.7720% 1.15%

Table 2: Comparative results of different S1 approximations. C1 and C2 computations were not changed for
these experiments.

2.4 Empirical Evaluation

2.4.1 Timing

In order to compare the speed gain of these approximations, we measured the time taken for S1 an C1
evaluation over several image sizes. All the evaluations were done on a dual core 3 GHz machine under
identical conditions. The evaluations was repeated five times. The average results are illustrated in Table 1

2.4.2 Accuracy

The different S1 approximations were evaluated on the Caltech 101 database and compared against the
baseline performance. 2000 C2 (500patches× 4sizes)units and a linear SVM based classifier was used for the
evaluation 1. The S2 and C2 layers were identical in all cases. The evaluations were repeated five times.
Table 2 shows the average and variance of the accuracies obtained in these cases.

3 Approximations at the C1 Layer

3.1 Quantization

In this section, we discuss the effects of quantization at the C1 level. There are two primary motivations
to study approximation at this level. Firstly, it is very unlikely that neural computations occur at full
precision. It is more easier to construct biophysical circuits whose internal representation uses only a few
discrete levels. Secondly, discrete (integer only) representation will reduce the computational complexity
and makes hardware implementation of the downstream stages feasible.

We computed the distribution of the C1 units (all 8 bands) using 500 ’natural images’ dataset. The
empirical distributions show that outputs of the C1 unit have a heavy tail distribution (See figure 6) making
uniform quantization impractical. Instead, we rely upon Max-Lloyd quantization, an optimal scheme that

1This is close to the baseline reported in [4]. The performance achieved by the current version of the model utilizing both
C1 and C2 features is significantly higher ( 55%)
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Figure 6: C1 statistics at several scales computed using 500 natural images

ensures a minimum variance of the quantization error, given the distribution. Given the probability density
function p(x) and a quantization scheme q(x), Max-Lloyd quantization determines M quantization values
y1, y2..yM and the corresponding intervals [a0, a1), [a1, a2) . . . [aM−1, aM ], that minimizes the error variance
given by

MSEq =
M∑
i=1

∫ ai

ai−1

|yi − x|2p(x)dx (17)

It can be shown that at the optimal MSE value, the quantization level yi is the centroid of its discretization
intervals [ai−1, ai], and the discretization boundaries is the mid-points of adjacent levels

yi =

∫ ai

ai−1
xp(x)dx∫ ai

ai−1
p(x)dx

(18)

ai =
yi−1 + yi

2
, i ∈ [1..M − 1] (19)

The boundaries a0 and aM correspond to the range of x. It can be seen that the solutions for yi

and ai depend upon each other. There is no closed form solution that allows us to compute these values
simultaneously. Therefore, max-Lloyd scheme depends upon an iterative scheme, where the initial values
of yi are obtained by guessing. Subsequently, the values of ai and yi are iteratively updated until they
converge. We found that 4 level quantization is sufficient to capture the dynamic range of S1 outputs over a
set of natural images (Figure 7 shows such an example). It is to be noted that the quantization levels and
intervals are determined separable for each band and direction.

3.2 Empirical Evaluation

Figure 7 shows the results of 4 level quantization performed on a single face image illustrated earlier. We
also compared the effect on accuracy by measuring the object classification performance of the system over
the Caltech 101 dataset. It is interesting to observe that the overall classification rate (See Table 3) is
slightly better with quantization. This is a reasonable behavior since quantization increases the invariance
at the C1 level.

4 Approximations at S2

Each S2 response is computed by obtaining the Euclidean distance between the patch and the C1 outputs
at each point. This procedure is repeated for every band of the C1 output and for each patch in the
representation dictionary. The complexity of this computation is O(M2N2P ), where P is the number of
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patches and M is the size of each patch. The C2 output is then computed by max pooling over all bands and
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Figure 7: Results of discretizing the S1 units for the face image shown. The top four rows correspond to the
baseline system and the bottom four results correspond to the quantized

Approximation Accuracy Std. Dev
Baseline 39.034% 0.44%

4 level quantization 40.760% 0.64%

Table 3: Comparative results of different S1 approximations. C1 and C2 computations were not changed for
these experiments.
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Figure 8: Overview of S2 computation. The S2 output corresponding to prototype patch Pi at band b is
computed by evaluating the similarity of the patch at each position in the C1 outputs C1b. The similarity
is based on a Gaussian tuning curve.

computation

all positions. In effect, only one response is retained after all this computation. Since we are interested in
finding only the maximum response, it is interesting to find out if this can be computed without evaluating
the response at all positions.

4.1 Subsampling Approximations

One simple approach is to compute the responses at regular grid or a fixed number of random positions.
If we subsample by a factor s ∈ [0, 1], the cost of the computation reduces to O(s2N2M2P ). In practice,
s ≈ 0.33, resulting in a factor of 10 reduction in complexity. However, it is to be noted, that by resorting to
sub-sampling, we lost the benefit of hardware accelerated implementations that perform distance computa-
tion/convolution over the whole image. It is hoped that the order of magnitude reduction in complexity will
offset this loss.

4.2 PCA Approximations

There is an S2 unit corresponding to each prototype patch selected during the training process. This
representation dictionary of C1 patches is redundant by design and therefore it is likely that the S2 responses
will also be redundant. We can utilize this redundancy to reduce the cost of computation. Here we investigate
if it is possible to reduce complexity by approximating the patches using a common basis function. The tuning
response for any given patch Pi and band b, the response is given by

S2(b,Pi)(x, y) = exp(−
∑
(u,v)

||Cb(x− u, y − v)− Pi(u, v)||2) (20)

(21)

Let us consider the response at one point in the C1 output (x,y is fixed). The response is now written in
simpler terms as exp(−||Cb − Pi||2). If the patches Pi are expressed in terms of the principal components,

Pi ≈
K∑

j=1

ajQj (22)

||Cb − Pi||2 ≈ ||Cb||2 + ||Pi||2 − 2 ∗ Cb

 K∑
j=2

ajQj

 (23)
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= ||Cb||2 + ||Pi||2 − 2

 K∑
j=1

aj(Qj ∗ Cb)

 (24)

All values of ||Pi||2 can be computed offline and before hand. Furthermore, all combinations of Qj ∗ Cb

can be computed before hand. The cost of computation is around O(KMN2). K < 6 in practice.

4.3 Empirical Evaluation

4.3.1 Timing

In order to compare the speed gain of these approximations, we measured the time taken for C2 evaluation
over several image sizes. All the evaluations were done on a dual core 3 GHz machine under identical
conditions. The evaluations were repeated five times. The PCA approximations were computed such that
99.9% of the original variance was retained within the templates. The average results are illustrated in Table
4. The S1 and C1 stages were all identical and is therefore not included in the timings. The gains predicted
by approximations are visible only for larger size images, since hardware accelerated implementations offer
sufficient efficiency at smaller image sizes. In some cases, the hardware accelerated versions actually perform
better than the approximations for some sizes (e.g.. sub-sampling approximation at larger sizes). Therefore,
care has to be taken to switch these approximations where they have the most impact.

Image Size Baseline Subsampling PCA
100× 100 7.6586 3.1336 8.3878
128× 128 11.2174 5.9716 9.0476
256× 256 38.3146 33.5820 14.028
512× 512 153.005 163.9780 40.738
480× 640 180.282 191.4970 54.109

Table 4: Timing comparisons for different S2 approximations. The S1,C1 timings are identical for all cases
and are not included here.

4.3.2 Accuracy

We measure the trade-off in accuracy by measuring the performance of these approximate representations
over the Caltech 101 database. The S1 and C1 layers were identical (baseline) in both cases.

Approximation Accuracy
Baseline 39.03

Sub sampling 38.28∗

PCA 35.89

Table 5: Accuracy trade-offs obtained by replacing S2 with approximations.

5 Approximations at the C2 Level

In this section, we discuss several approximations at the C2 description level. The approximations pre-
dominantly consists of scaling and quantization. The existing model relies upon continuous outputs for
classification, a situation that is hard to realize using biophysically plausible circuits. It is interesting to find
out as to how many levels of representation is sufficient for performing object recognition.
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Approximation Accuracy Std. Dev
Baseline 39.034 0.44

Log Baseline 2 40.8700 0.36
Binarization 31.428 0.98

Log scaling and Binarization 32.480 0.56
4 Level Quantization 37.3920 0.63
8 Level Quantization 38.5240 0.49

C1 and C2 Quantization 3 32.4540 0.56

Table 6: Comparative results of different approximations. All numbers are in percentages

5.1 Binarization

Here we quantize the C2 outputs into two levels based on statistics collected over 500 natural images. For
each C2 unit, we observe that the output distribution follows a log-normal distribution. We determined
the parameters of this distribution, and discretized the C2 unit outputs into two levels ±1 based on whether
if its above or below the mean.

5.2 Multi-level Quantization

Since optimal quantization schemes like Max Lloyd work with bounded range variables, we cannot use it to
optimally quantize C2 units. Instead we rely upon our previous observation that the C2 unit outputs are
distributed in a log-normal fashion. Multi-level quantization is then carried out by quantizing the output at
equal probability intervals.

5.3 Empirical Evaluation

The different quantization schemes were evaluated by performing classification on the Caltech 101 dataset.
2000 C2 units and a linear SVM were used for the evaluation. Identical splits (15 training and 50 testing
examples) were used in all the experiments. The S2 universal patch dictionary was built by randomly
selection C1 patches from 500 natural images. The evaluation was repeated 5 times. Table ?? shows the
mean and std. deviation of these results.

5.4 Quantization vs. Representation

It is seen that quantizing the C2 output leads to considerable (around 7%) drop in accuracy. However,
quantizing to 4 levels or 8 levels restores the classification rate to nearly baseline levels. It is also observed
that the performance can be increased (not indefinitely) by increasing the number of C2 units. We are
interested in finding out if the number of C2 units can be traded off with output precision. We conjecture
that the performance is strongly correlated with the number of bits (levels at C2 units × number of C2 units)
and hence information content. We measured the performance of the system using several discretization levels
and number of C2 units. The results are shown in Table 7.

6 Conclusion

The HMAX model is a biologically inspired hierarchical model for object recognition. Due to its faithfulness
to biology, it is computationally bound and is not very practical from a deployable computer vision perspec-
tive. In this report, we attempted to increase the efficiency of the model by performing approximation at
several levels. We reported accuracy vs. speed trade-off results evaluated over the Caltech 101 database.
Further, we discussed the implications of quantization at the various stages and in particular studied the
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Patches per size Baseline 2 Levels 4 Levels 8 Levels
500 39.034(0.44) 31.428(0.98) 37.39(0.63) 38.524(0.49)
1000 41.730(0.68) 35.21(0.63) 39.99(0.34) 40.84(0.36)
2000 42.46(0.32) 37.02(0.46) 41.37(0.35) 42.32(0.27)

Table 7: Trade off between the precision of representation at the C2 level and number of patches at the C1
level

trade-off between the number of features used for classification vs. the number of quantization levels used
for the features.
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