
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2011-033

CBCL-301

June 30, 2011

Kernels for Vector-Valued Functions: a Review

Mauricio A. Alvarez, Lorenzo Rosasco, and Neil D. Lawrence

Kernels for Vector-Valued Functions: a Review

Mauricio A. Álvarez‡,+, Lorenzo Rosasco],†, Neil D. Lawrence?,�,
‡ - School of Computer Science, University of Manchester Manchester, UK, M13 9PL.

+ Department of Electrical Engineering, Universidad Tecnológica de Pereira, Colombia, 660003

] - CBCL, McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA, USA

† -IIT@MIT Lab, Istituto Italiano di Tecnologia, Genova, Italy

? - School of Computer Science, University of Sheffield, UK

� The Sheffield Institute for Translational Neuroscience, Sheffield, UK.

malvarez@utp.edu.co, lrosasco@mit.edu, n.lawrence@sheffield.ac.uk

June 27, 2011

Abstract

Kernel methods are among the most popular techniques in machine learning. From a
frequentist/discriminative perspective they play a central role in regularization theory as
they provide a natural choice for the hypotheses space and the regularization functional
through the notion of reproducing kernel Hilbert spaces. From a Bayesian/generative per-
spective they are the key in the context of Gaussian processes, where the kernel function
is also known as the covariance function. Traditionally, kernel methods have been used in
supervised learning problem with scalar outputs and indeed there has been a considerable
amount of work devoted to designing and learning kernels. More recently there has been an
increasing interest in methods that deal with multiple outputs, motivated partly by frame-
works like multitask learning. In this paper, we review different methods to design or learn
valid kernel functions for multiple outputs, paying particular attention to the connection
between probabilistic and functional methods.

1

Contents
1 Introduction 3

2 Learning Scalar Outputs with Kernel Methods 4
2.1 A frequentist/discriminative perspective . 4
2.2 A Bayesian/generative perspective . 5
2.3 A comparison between generative and discriminative point of views 6

3 Learning Multiple Outputs with Kernels Methods 8
3.1 Learning Vector Valued Functions . 8
3.2 Reproducing Kernel for Vector Valued Function 9
3.3 Gaussian Processes for Vector Valued Functions 10

4 Separable Kernels 11
4.1 Kernels and Regularizers . 12
4.2 Coregionalization Models . 14

4.2.1 The linear model of coregionalization 14
4.2.2 Intrinsic coregionalization model . 15
4.2.3 Linear Model of Coregionalization in Machine Learning and Statistics 17

4.3 Extensions . 18
4.3.1 Extensions within the Regularization Framework 19
4.3.2 Extensions in the Bayesian Framework 20

5 Beyond Separable Kernels 21
5.1 Invariant Kernels . 21
5.2 Process convolutions . 22

5.2.1 Comparison between process convolutions and LMC 25
5.2.2 Other approaches related to process convolutions 26

6 Inference and Computational Considerations 27
6.1 Estimation of parameters in regularization theory 27
6.2 Estimation of parameters in Gaussian processes literature 28

7 Discussion 31

2

1 Introduction
Many modern applications of machine learning require solving several decision making or
prediction problems and exploiting dependencies between the problems is often the key to
obtain better results and coping with a lack of data (to solve a problem we can borrow strength
from a distinct but related problem).

In sensor networks, for example, missing signals from certain sensors may be predicted
by exploiting their correlation with observed signals acquired from other sensors [65]. In
geostatistics, predicting the concentration of heavy pollutant metals, which are expensive
to measure, can be done using inexpensive and oversampled variables as a proxy [31]. In
computer graphics, a common theme is the animation and simulation of physically plausible
humanoid motion. Given a set of poses that delineate a particular movement (for exam-
ple, walking), we are faced with the task of completing a sequence by filling in the missing
frames with natural-looking poses. Human movement exhibits a high-degree of correlation.
Consider, for example, the way we walk. When moving the right leg forward, we uncon-
sciously prepare the left leg, which is currently touching the ground, to start moving as soon
as the right leg reaches the floor. At the same time, our hands move synchronously with our
legs. We can exploit these implicit correlations for predicting new poses and for generating
new natural-looking walking sequences [91]. In text categorization, one document can be as-
signed to multiple topics or have multiple labels [44]. In all the examples above, the simplest
approach ignores the potential correlation among the different output components of the
problem and employ models that make predictions individually for each output. However,
these examples suggest a different approach based on exploiting the interaction between the
different components to improve their joint prediction. Within the machine learning com-
munity this type of modeling is often broadly referred to to as multitask learning. Again the
key idea is that information shared between different tasks can lead to improved perfor-
mance in comparison to learning the same tasks individually. Interestingly these ideas are
related to the so called transfer learning [84, 16, 9], a term which refers to systems that learn by
transferring knowledge between different domains, for example:“what can we learn about
running through seeing walking?”
More formally, the classical supervised learning problem requires estimating the output for
any given input x∗; an estimator f∗(x∗) is built on the basis of a training set consisting of
N input-output pairs S = (X,Y) = (x1, y1), . . . , (xN , yN). The input space X is usually a
space of vectors, while the output space is a space of scalars. In multiple output learning
(MOL) the output space is a space of vectors; the estimator is now a vector valued function f .
Indeed we can think this situation can also be described as the problem of solving D distinct
classical supervised problems, where each problem is described by one of the components
f1, . . . , fD of f . As mentioned before, the key idea is to work under the assumption that
the problems are in some way related. The idea is then to exploit the relation among the
problems to improve upon solving each problem separately.

The goal of this survey is twofold. First, we aim at discussing recent results in multi-
output/multi-task learning based on kernel methods and Gaussian processes providing an
account of the state of the art in the field. Second, we analyze systematically the connections
between Bayesian and frequentist (generative and discriminative) approaches. Indeed re-
lated techniques have been proposed from different perspectives and drawing clearer con-
nections can boost advances in the field, while fostering collaborations between different

3

communities.

The plan of the paper follows. In Chapter 2 we give a brief review of the main ideas
underlying kernel methods for scalar learning, introducing the concepts of regularization
in reproducing kernel Hilbert spaces and Gaussian Processes. In Chapter 3.1 we describe
how similar concepts extend to the context of vector valued functions and discuss different
settings that can be considered. In Chapter 4 and 5 we discuss several examples of kernels
drawing the connections between the Bayesian and the regularization framework. The pa-
rameter estimation problem and the computational complexity problem are both described
in Chapter 6. Finally we conclude in Section 7 with some remarks an discussion.

2 Learning Scalar Outputs with Kernel Methods
To make the paper self contained, we will start our study reviewing the classical supervised
learning problem of learning scalar valued function. This would also serve as an opportu-
nity to review connections between generative and discriminative methods.

As we mentioned above, in the classical setting of supervised learning, we have to build
an estimator (e.g. a classification rule or a regression function) on the basis of a training set
S = (X,Y) = (x1, y1), . . . , (xN , yN). Given a symmetric and positive bivariate function k,
namely a kernel, one of the most popular estimators in machine learning is defined as

f∗(x∗) = k>x∗(k(X,X) + λNI)−1Y, (1)

where k(X,X) has entries k(xi,xj), Y = [y1, . . . , yN]> and kx∗ = [k(x1,x∗), . . . , k(xN ,x∗)]>,
where x∗ is a new input point. Interestingly, such an estimator can be derived from two
different, though, related perspectives.

2.1 A frequentist/discriminative perspective
We will first describe a frequentist/discriminative perspective (see [29, 90, 86]). The key
point in this setting is that the estimator is assumed to belong to a reproducing kernel Hilbert
space (RKHS),

f∗ ∈ Hk.
Then the estimator is derived as the minimizer of a regularized functional

1
N

N∑
i=1

(f(xi)− yi)2 + λ‖f‖2k. (2)

The first term in the functional is the so called empirical risk and it is the sum of the squared
errors. It measures the price we pay when predicting f(x) in place of y. The second term
in the functional is the (squared) norm in a RKHS. This latter concept plays a key role, so
we review a few essential concepts (see [77, 5, 90, 21]). A RKHS Hk is a Hilbert space of
functions and can be defined by a reproducing kernel1 k : X × X → R, which is a symmet-
ric, positive definite function. The latter assumption amounts to requiring the matrix with

1In the following we will simply write kernel rather than reproducing kernel.

4

entries k(xi,xj) to be positive for any (finite) sequence (xi). Given a kernel k, the RKHS Hk
is the Hilbert space such that k(x, ·) belongs toHk for all x ∈ X and

f(x) = 〈f, k(x, ·)〉k , ∀ f ∈ Hk,
where 〈·, ·〉k is the inner product.

The latter property, called reproducing property, gives the name to the space. Two further
properties make RKHS appealing:

• functions in a RKHS can be described as linear combinations of the kernel at given
points, f(x) =

∑
i k(xi,x)ci, hence allowing to describe in unified framework linear

models as well as a variety of generalized linear models;

• the norm in a RKHS is a natural measure of how complex is a function. Specific ex-
amples are given by the shrinkage point of view taken in ridge regression with linear
models [34] or the regularity expressed in terms of magnitude of derivatives, as it is
done in splines models [90].

In this setting the functional (2) can be derived either from a regularization point of view [29,
90] or from the theory of empirical risk minimization (ERM) [86]. In the former, one observes
that, if the spaceHk is large enough, the minimization of the empirical error is ill-posed, and
in particular it is unstable to noise and sampling in the data: adding the squared norm
stabilizes the problem. The latter point of view, starts from the analysis of ERM showing
that generalization to new samples can be achieved if there is a tradeoff between fitting and
complexity2 of the estimator. The functional (2) can be seen as an instance of such a trade-
off.
The explicit form of the estimator is derived in two steps. First, one can show that the
minimizer of (2) can always be written as a linear combination of the kernels centered at the
training set points,

f∗(x∗) =
N∑
i=1

k(x∗,xi)ci = k>x∗c.

The above result is the celebrated representer theorem originally proved in [45] (see for a
more recent account and further references [22]).

Then, explicit form of the coefficients c = [c1, . . . , cN]> can be derived plugging the above
expression in (2).

2.2 A Bayesian/generative perspective
A Gaussian process (GP) is a stochastic process with the important characteristic that any
finite number of random variables taken from a realization of the Gaussian process, follows
a joint Gaussian distribution. This assumption allows to place a prior over functions [73].
We say that the function f follows a Gaussian process and write

f ∼ GP(m, k),

where m is the mean function and k the covariance or kernel function. The mean function
and the covariance function completely specify the Gaussian process. In other words the

2For example, the Vapnik–Chervonenkis dimension [76]

5

above assumption means that for any finite set X = {xn}Nn=1 if we let f(X) = [f(x1), . . . , f(xN)]>

then

f(X) ∼ N (m(X), k(X,X)),

where m(X) = [m(x1), . . . ,m(xN)]> and k(X,X) is the kernel matrix. In the following,
unless otherwise stated, we assume that the mean vector is zero.

From a Bayesian statistics point of view, the Gaussian process specifies our prior beliefs
about the properties of the function we are modeling. Our beliefs are updated in the pres-
ence of data by means of a likelihood function, that relates our prior assumptions to the actual
observations, leading to an updated distribution, the posterior distribution, that can be used,
for example, for predicting test cases. Different moments from the posterior distribution can
be used as the estimators for the data.

In a regression context, the likelihood function is usually Gaussian and expresses a linear
relation between the observations and a given model for the data that is corrupted with a
zero mean Gaussian white noise,

p(y|f,x, σ2) = N (f(x), σ2),

where σ2 corresponds to the variance of the noise.
The posterior distribution can be computed analytically. For a test input vector x∗, given

the training S, this posterior distribution follows

p(f(x∗)|S, f,x∗,φ) = N (f∗(x∗), k∗(x∗,x∗)),

with

f∗(x∗) = k>x∗(k(X,X) + σI)−1y,

k∗(x∗,x∗) = k(x∗,x∗)− k>x∗(k(X,X) + σI)−1kx∗

where φ denotes the set of hyperparameters of the covariance function k(x,x′) used to com-
pute the matrix k(X,X) and the variance of the noise σ2. Note that if we are interested into
the distribution of the noisy predictions it is easy to see that we simply have to add σ2 to the
expression of the prediction variance (see [73]).

Equations for f∗(x∗) and k∗(x∗,x∗) are obtained under the assumption of a Gaussian
likelihood, common in regression setups. For non-Gaussian likelihoods, for example in clas-
sification problems, closed form solutions are not longer possible. We can resort to different
approximations, including the Laplace approximation and variational Bayes [73].

2.3 A comparison between generative and discriminative point of
views
Connections between regularization theory and Gaussian processes prediction or Bayesian
models for prediction have been pointed out elsewhere [70, 90, 73]. Here we just give a very
brief sketch of the argument. We restrict ourselves to finite dimensional RKHS. Under this

6

assumption one can show that every RKHS can be described in terms of a feature map, that
is a map Φ : X → Rp, such that

k(x,x′) =
p∑
j=1

Φj(x)Φj(x′).

In fact in this case one can show that functions in the RKHS with kernel can be written as

fw(x) =
∑
j=1

wjΦj(x) = 〈w,Φ(x)〉 , and ‖fw‖k = ‖w‖.

Then we can build a Gaussian process by assuming the coefficient w = w1, . . . , wp to be
distributed according to a multivariate Gaussian distribution. Roughly speaking, in this
case the assumption f∗ ∼ GP (0,K) becomes

w ∼ N (0, I) ∝ e−‖w‖2 .

As we noted before a Gaussian assumption on the noise gives a likelihood of the form,
P (Y|X, f) = N (f(X), σI) ∝ e−

1
σ2 ‖fw(X)−Y‖2n , where fw(X) = (〈w,Φ(x1)〉 , . . . , 〈w,Φ(xn)〉

and ‖fw(X)−Y‖2n =
∑n
i=1(〈w,Φ(xi)〉− yi)2. Then the posterior distribution is proportional

to
e−(1

σ2 ‖fw(X)−Y‖2n+‖w‖2),

and we see that a maximum a posteriori estimate will in turn give the minimization problem
defining Tikhonov regularization, where the regularization parameter is now related to the
noise variance.

We note that in practice the squared error is often replaced by a more general error term
1
N

∑N
i=1 `(f(xi), yi). In a discriminative perspective, the loss function ` : R × R → R+

measure the error we incur when predicting f(x) in place of y. The choice of the loss function
is problem dependent and examples are the square loss, the logistic loss or the hinge loss
used in support vector machines [76].

In the Bayesian setting, the loss function appears at a second stage of the analysis, known
as the decision stage, and it is clearly separated from the likelihood function. The likelihood
function and the prior are used at a first stage of the analysis to quantify the uncertainty in
the predictions via the posterior distribution. The role of the likelihood function is to model
how the observations deviate from the assumed true model. The loss function appears later
as part of the decision process, and weighs how incorrect decisions are penalized given the
current uncertainty.

The discussion in the previous sections shows that the notion of kernel plays a crucial
role in statistical modeling both in the Bayesian perspective (as the covariance function of
a GP) and the frequentist perspective (as a reproducing kernel). Indeed, for scalar valued
problems there is a rich literature on the design of kernels (see for example [76, 79, 73] and
references therein). In the next sections we show how the concept of kernel can be used in
multi-output learning problems. Before doing we describe how the notion of RKHSs and
GPs translates to the setting of vector valued learning.

7

3 Learning Multiple Outputs with Kernels Methods
In this chapter we discuss the basic setting for learning vector valued functions and related
problems (multiclass, multilabel) and then describe how the concept of kernels (reproducing
kernels and covariance function for GP) translate to this setting.

3.1 Learning Vector Valued Functions
The problem we are interested is that of learning an unknown functional relationship f
between an input space X , for example X = Rp and output space RD. In the following
we will see that the problem can be tackled either assuming that f belongs to reproducing
kernel Hilbert space of vector valued functions or assuming that f is drawn from a vector
valued Gaussian process. Before doing this we describe several slightly different settings all
falling under the vector valued learning problem.
The natural extension of the traditional supervised learning problem is the one we discussed
in the introduction that is when the data are pairs S = (X,Y) = (x1, y1), . . . , (xN , yN). For
example this is the typical setting for problems such as motion/velocity fields estimation. A
special case is that of multi-category classification problem or multi-label problems, where if
we have D classes each input point can be associated to a (binary) coding vector where, for
example 1 stands for presence (0 for absence) of a class instance.The simplest example is the
so called one vs all approach to multiclass classification which, if we have {1, . . . , D} classes,
amounts to the coding i→ ei, where (ei) is the canonical basis of RD.
A more general situation is that where different components might have different training
set cardinalities, different input points or in the extreme case even different input spaces.
In this case we have a training set Sd = (Xd,Yd) = (xd,1, yd,1), . . . , (xd,Nd , yd,Nd) for each
component fd, with d = 1, . . . , D, where the cardinalities (Nd) might be different and the
input for a component might belong to different inputs space (Xd).

The terminology used in machine learning often does not distinguish the different set-
tings above and the term multitask learning is often used. In this paper we use the term
multi-output learning or vector valued learning to define the general class of problems and
use the term multi-task for the case where each component has different inputs. Indeed in
this very general situation each component can be thought of as a distinct task possibly re-
lated to other tasks (components). In the geostatistics literature, if each output has the same
set of inputs the system is known as isotopic and the case where we allow each output to be
associated with a different set of inputs, heterotopic [89]. Heterotopic data is further classified
into entirely heterotopic data, where the variables have no sample locations in common, and
partially heterotopic data, where the variables share some sample locations. In machine learn-
ing, the partially heterotopic case is sometimes referred to as asymmetric multitask learning
[97, 17].

The notation in the multitask learning scenario (heterotopic case) is a bit more involved.
In the following to simplify the notation we assume each component to have the same cardi-
nality. For the sake of simplicity sometimes we restrict the presentation to the isotopic setting
though the models can usually readily be extended to more general settings. In the following
we will use the notation X to indicate the collection of all the training input points (Xj) and
S to denote the collection all the training data. Also we will use the notation f(X) to indicate
a vector valued functions evaluated at different training points; we note that this notation

8

has slightly different meaning depending on the way the input points are sampled. If the in-
put to all the components are the same then X = x1, . . . ,xN and f(X) = f1(x1), . . . , fD(xN).
If the input for the different components are different then X = {Xd}Dd=1 = X1, . . . ,XD,
where Xd = {xd,n}Nn=1 and f(X) = (f1(x1,1), . . . , f1(x1,N)), . . . , (fD(xD,1), . . . , fD(xD,N)).

3.2 Reproducing Kernel for Vector Valued Function
The definition of RKHS for vector valued functions parallels the one in the scalar, with the
main difference that the reproducing kernel is now matrix valued [15]. A reproducing kernel
is a symmetric function K : X × X → RD×D, such that for any x,x′ K(x,x′) is a positive
semi-definite matrix. A vector valued RKHS is a Hilbert space H of functions f : X → RD,
such that for very c ∈ RD, and x, K(x,x′)c, as a function of x′ belongs to H and moreover
K has the reproducing property

〈f ,K(·,x)c〉K = f(x)>c,

where 〈·, ·〉K is the inner product inH.
Again, the choice of the kernel corresponds to the choice of the representation (parame-

terization) for the function of interest. In fact any function in the RKHS can be written as a
(possibly infinite) linear combination

f(x) =
∞∑
i=1

K(xi,x)cj , cj ∈ RD,

where we note that in the above equation each term K(xi,x) is a matrix acting on a vector
cj . Also in this context the norm in the RKHS is a measure of the complexity of a function
and this will be the subject of the next sections.

For the following discussion it it interesting to note that the definition of vector valued
RKHS can be described in a component-wise fashion in the following sense. The kernel K
can be described by a scalar kernel R acting jointly on input examples and task indices, that
is

(K(x,x′))t,t′ = R((x, t), (x′, t′)), (3)

where R is a scalar reproducing kernel on the space X ×{1, . . . , D}. This latter point of view
is useful while dealing with multitask learning, see [23] for a discussion.

Provided with the above concepts we can follow a regularization approach to define an
estimator by minimizing the regularized empirical error (2), which in this case can be written
as

D∑
j=1

1
N

N∑
i=1

(fj(xi)− yj,i)2 + λ‖f‖2K, (4)

where f = (f1, . . . , fD). Once again the solution is given by the representer theorem

f(x) =
N∑
i=1

K(xi,x)ci,

9

and the coefficient satisfies the linear system

c = (K(X,X) + λNI)−1y. (5)

where, c,y are ND vectors obtained concatenating the coefficients and the outputs vectors,
and K(X,X) is a nD times ND with entries (K(xi,xj))s,t, with d, d′ = 1, . . . , N and d, d′ =
1, . . . , D (see for example [58]). More explicitly

K(X,X) =


(K(X1,X1))1,1 · · · (K(X1,XD))1,D
(K(X2,X1))2,1 · · · (K(X2,XD))2,D

... · · · ...
(K(XD,X1))D,1 · · · (K(XD,XD))D,D


where each block (K(Xi,Xj))i,j is an N by N matrix (here we make the simplifying as-
sumption that each component has the same cardinality). Note that given a new point x∗
the corresponding prediction is given by

f(x∗) = K>x∗c,

where Kx∗ ∈ RD×ND has entries (K(x∗,xj))d,d′ for j = 1, . . . , N and d, d′ = 1, . . . , D.

3.3 Gaussian Processes for Vector Valued Functions
Gaussian process methods for modeling vector-valued functions follow the same approach
as in the single output case. Recall that a Gaussian process is defined as a collection of
random variables, such that any finite number of them follows a joint Gaussian distribution.
In the single output case, the random variables are associated to a process f evaluated at
different values of x while in the multiple output case, the random variables are associated
to different processes {fd(x)}Dd=1, evaluated at different values of x [20, 31, 87].

The vector-valued function f is assumed to follow a Gaussian process

f ∼ GP(m,K), (6)

where m ∈ RD is a vector which components are the mean functions {md(x)}Dd=1 of each
output and K is a positive matrix valued function as in section 3.2. The entries (K(x,x′))d,d′
in the matrix K(x,x′) correspond to the covariances between the outputs fd(x) and fd′(x′)
and express the degree of correlation or similarity between them.

For a set of inputs X, the prior distribution over the vector f(X) is given as

f(X) ∼ N (m(X),K(X,X)),

where m(X) is a vector that concatenates the mean vectors associated to the outputs and the
covariance matrix K(X,X) is a block partitioned matrix with blocks given by (K(Xd,Xd′))d,d′ ,
as in section 3.2. Without loss of generality, we assume the mean vector to be zero.

In a regression context, the likelihood function for the outputs usually follows a Gaussian
form, so that the observed outputs relate to f by

p(y|f ,x,Σ) = N (f(x),Σ),

10

where Σ ∈ RD×D is a diagonal matrix with elements3 {σ2
d}Dd=1.

With this Gaussian likelihood, the predictive distribution and the marginal likelihood
can be derived analytically. The predictive distribution for a new vector x∗ is [73]

p(f(x∗)|S, f ,x∗,φ) = N (f∗(x∗),K∗(x∗,x∗)) , (7)

with

f∗(x∗) = K>x∗(K(X,X) + Σ)−1y,

K∗(x∗,x∗) = K(x∗,x∗)−Kx∗(K(X,X) + Σ)−1K>x∗ ,

where Σ = Σ ⊗ IN , Kx∗ ∈ RD×ND has entries (K(x∗,xj))d,d′ for j = 1, . . . , N and d, d′ =
1, . . . , D, and φ denotes the set of hyperparameters of the covariance function K(x,x′) used
to compute K(X,X) and the variances of the noise for each output {σ2

d}Dd=1. Again we note
that if we are interested into the distribution of the noisy predictions it is easy to see that
we simply have to add Σ to the expression of the prediction variance. The above expression
for the mean prediction coincides again with the prediction of the estimator derived in the
regularization framework.

In the following chapters we describe several possible choices of kernels (covariance
function) for multi-output problems. We start in the next chapter with kernel functions
constructed by means of a clear separation between the contributions of the input space and
the output index. Later on, we will see alternative ways to construct kernel functions that
interleave both contributions in a way far from trivial.

4 Separable Kernels
In this chapter we review a class of multi-output kernel functions that can be formulated as
a product of a kernel function for the input space alone, and a kernel function that encodes
the interactions between the outputs, without any reference to the input space. We refer
broadly to this type of multi-output kernel functions as separable kernels.

We consider a class of kernels of the form

(K(x,x′))d,d′ = k(x,x′)kT (d, d′),

where k, kT are scalar kernels on X × X and {1, . . . , D} × {1, . . . , D}. Equivalently one can
consider the matrix expression

K(x,x′) = k(x,x′)B, (8)

where B is a D ×D symmetric and positive semi-definite matrix. In the same spirit a more
general class of kernels is given by

K(x,x′) =
Q∑
q=1

kq(x,x′)Bq.

3This relation derives from yd(x) = fd(x)+εd(x), for each d, where {εd(x)}Dd=1 are independent white Gaussian
noise processes with variance σ2

d.

11

We call this class of kernels separable since comparing to (3) we see that the contribution of
input and output is decoupled. For this class of kernels, the kernel matrix associated to a
data set X has a simpler form and can be written as

K(X,X) =
Q∑
q=1

Bq ⊗ kq(X,X), (9)

where ⊗ represents the Kronecker product between matrices.
The simplest example of separable kernel is given by setting kT (d, d′) = δd,d′ , that is B = I, in
this case all the outputs are treated as independent. In this case the kernel matrix K(X,X),
associated to some set of data X, becomes block diagonal. Since the off diagonal terms
are the ones encoding output relatedness. Then, one can see that the matrix B encodes
dependencies among the outputs.

The key question is then how to choose the scalar kernels {kq}Qq=1 and especially how to
design or learn the matrices {Bq}Qq=1. This is the subject we discuss in the next few sections.
We will see that one can approach the problem from a regularization point of view, where
kernels will be defined by the choice of suitable regularizers, or from a Bayesian point of
view, constructing covariance functions from explicit generative models for the different
output components. As it turns these two points of view are equivalent and allow for two
different interpretation of the same class of models.

4.1 Kernels and Regularizers
A possible way to design more complex kernels of the form (8) is given by the following
result. If K is given by (8) then the norm of a function in the corresponding RKHS can be
written as

‖f‖2K =
D∑

d,d′=1

B†d,d′ 〈fd, fd′〉k , (10)

where B† is the pseudoinverse of B and f = (f1, . . . , fD). The above expression gives an-
other way to see why the matrix B encodes the relation among the tasks. In fact, we can
interpret the right hand side in the above expression as a regularizer inducing specific cou-
pling among different tasks 〈ft, ft′〉k with different weights given by B†d,d′ . This result says
that any of such regularizer induces a kernel of the form (8). We illustrate the above idea
with a few examples.

Mixed Effect Regularizer Consider the regularizer given by

R(f) = Aω

Cω D∑
`=1

‖f`‖2k + ωD
D∑
`=1

‖f` − 1
D

D∑
q=1

fq‖2k
 (11)

where Aω = 1
2(1−ω)(1−ω+ωD) and Cω = (2− 2ω + ωD). The above regularizer is composed of

two terms: the first is a standard regularization term on the norm of each component of the
estimator; the second forces each f` to be close to the mean estimator across the components,

12

f = 1
D

∑D
q=1 fq. The corresponding kernel imposes a common similarity structure between

all the output components and the strength of the similarity is controlled by a parameter ω,

Kω(x,x′) = k(x,x′)(ω1 + (1− ω)I) (12)

where 1 is the D×D matrix whose entries are all equal to 1, I is the D-dimensional identity
matrix and k is a scalar kernel on the input space X . Setting ω = 0 corresponds to treating all
components independently and the possible similarity among them is not exploited. Con-
versely, ω = 1 is equivalent to assuming that all components are identical and are explained
by the same function. By tuning the parameter ω the above kernel interpolates between this
two opposites cases [23].

Cluster Based Regularizer. Another example of regularizer, proposed in [24], is based
on the idea of grouping the components into r clusters and enforcing the components in
each cluster to be similar. Following [41], let us define the matrix E as the D × r matrix,
where r is the number of clusters, such that E`,c = 1 if the component l belongs to cluster
c and 0 otherwise. Then we can compute the D × D matrix M = E(E>E)−1E> such that
M`,q = 1

mc
if components l and q belong to the same cluster c, and mc is its cardinality,

M`,q = 0 otherwise. Furthermore let I(c) be the index set of the components that belong to
cluster c. Then we can consider the following regularizer that forces components belonging
to the same cluster to be close to each other:

R(f) = ε1

r∑
c=1

∑
`∈I(c)

‖f` − f c‖2k + ε2

r∑
c=1

mc‖f c‖2k, (13)

where f c is the mean of the components in cluster c and ε1, ε2 are parameters balancing the
two terms. Straightforward calculations show that the previous regularizer can be rewritten
as R(f) =

∑
`,q G`,q 〈f`, fq〉k, where

G`,q = ε1δlq + (ε2 − ε1)M`,q. (14)

Therefore the corresponding matrix valued kernel is K(x,x′) = k(x,x′)G†.

Graph Regularizer. Following [57, 80], we can define a regularizer that, in addition to
a standard regularization on the single components, forces stronger or weaker similarity
between them through a D ×D positive weight matrix M,

R(f) =
1
2

D∑
`,q=1

‖f` − fq‖2kM`q +
D∑
`=1

‖f`‖2kM`,`. (15)

The regularizer J(f) can be rewritten as:
D∑

`,q=1

(
‖f`‖2kM`,q − 〈f`, fq〉k M`,q

)
+

D∑
`=1

‖f`‖2kM`,` =

D∑
`=1

‖f`‖2k
D∑
q=1

(1 + δ`,q)M`,q −
D∑

`,q=1

〈f`, fq〉k M`,q =

D∑
`,q=1

〈f`, fq〉k L`,q (16)

13

where L = D−M, with D`,q = δ`,q
(∑D

h=1 M`,h + M`,q

)
. Therefore the resulting kernel will

be K(x,x′) = k(x,x′)L†, with k(x,x′) a scalar kernel to be chosen according to the problem
at hand.

In the next section we will see how models related to those described above can be de-
rived from suitable generative models.

4.2 Coregionalization Models
The use of probabilistic models and Gaussian processes for multi-output learning was pio-
neered and largely developed in the context of geostatistics, where prediction over vector-
valued output data is known as cokriging. Geostatistical approaches to multivariate mod-
elling are mostly formulated around the “linear model of coregionalization” (LMC) [43, 31],
that can be considered as a generative approach for developing valid covariance functions.
Covariance functions obtained under the LMC assumption follow a separable form. We will
start considering this model and then discuss how several models recently proposed in the
machine learning literature are special cases of the LMC.

4.2.1 The linear model of coregionalization

In the linear model of coregionalization, the outputs are expressed as linear combinations
of independent random functions. This is done in a way that ensures that the resulting
covariance function (expressed jointly over all the outputs and the inputs) is a valid positive
semidefinite function. Consider a set of D outputs {fd(x)}Dd=1 with x ∈ Rp. In the LMC,
each component fd is expressed as [43]

fd(x) =
Q∑
q=1

ad,quq(x),

where the functions uq(x), with q = 1, . . . , Q, have mean equal to zero and covariance
cov[uq(x), uq′(x′)] = kq(x,x′) if q = q′. The processes {uq(x)}Qq=1 are independent for q 6= q′.
The independence assumption can be relaxed and such relaxation is presented as an ex-
tension in section 4.3. Some of the basic processes uq(x) and uq′(x′) can have the same
covariance kq(x,x′), this is kq(x,x′) = kq′(x,x′), while remaining independent.

A similar expression for {fd(x)}Dd=1 can be written grouping the functions uq(x) which
share the same covariance [43, 31]

fd(x) =
Q∑
q=1

Rq∑
i=1

aid,qu
i
q(x), (17)

where the functions uiq(x), with q = 1, . . . , Q and i = 1, . . . , Rq, have mean equal to zero
and covariance cov[uiq(x), ui

′
q′(x

′)] = kq(x,x′) if i = i′ and q = q′. Expression (17) means that
there are Q groups of functions uiq(x) and that the functions uiq(x) within each group share
the same covariance, but are independent. The cross covariance between any two functions

14

fd(x) and fd′(x) is given in terms of the covariance functions for uiq(x)

cov[fd(x), fd′(x′)] =
Q∑
q=1

Q∑
q′=1

Rq∑
i=1

Rq∑
i′=1

aid,qa
i′
d′,q′ cov[uiq(x), ui

′
q′(x

′)].

Notice that the covariance cov[fd(x), fd′(x′)] is equivalent to (K(x,x′))d,d′ . Due to the inde-
pendence of the functions uiq(x), the above expression reduces to

(K(x,x′))d,d′ =
Q∑
q=1

Rq∑
i=1

aid,qa
i
d′,qkq(x,x

′) =
Q∑
q=1

bqd,d′kq(x,x
′), (18)

with bqd,d′ =
∑Rq
i=1 a

i
d,qa

i
d′,q. The kernel K(x,x′) can now be expressed as

K(x,x′) =
Q∑
q=1

Bqkq(x,x′), (19)

where Bq ∈ RD×D is known as the coregionalization matrix. The elements of each Bq are
the coefficients bqd,d′ appearing in equation (18). From the generative point of view, the rank
for the matrices Bq is determined by the number of latent functions that share the same
covariance function kq(x,x′), this is, by the coefficientRq. Therefore, in the LMC perspective
of separable kernels, the rank of the matrices Bq has a physical interpretation. Compare to
the perspective of separable kernels from the regularization theory point of view, where the
rank of the matrices Bq is given without any physical motivation.

Equation (17) can be interpreted as a nested structure [89] in which the outputs fd(x) are
first expressed as a linear combination of spatially uncorrelated processes fd(x) =

∑Q
q=1 f

q
d (x),

with E[f qd (x)] = 0 and cov[f qd (x), f q
′
d′ (x

′)] = bqd,d′kq(x,x
′) if q = q′, otherwise it is equal to

zero. At the same time, each process f qd (x) can be represented as a set of uncorrelated func-
tions weighted by the coefficients aid,q, f

q
d (x) =

∑Rq
i=1 a

i
d,qu

i
q(x) where again, the covariance

function for uiq(x) is kq(x,x′).
Therefore, starting from a generative model for the outputs, the linear model of coregion-

alization leads to a separable kernel: it represents the covariance function as the sum of the
products of two covariance functions, one that models the dependence between the outputs,
independently of the input vector x (the coregionalization matrix Bq), and one that models
the input dependence, independently of the particular set of functions fd(x) (the covariance
function kq(x,x′)). The covariance matrix for f(X) is given by (9).

4.2.2 Intrinsic coregionalization model

A simplified version of the LMC, known as the intrinsic coregionalization model (ICM) (see
[31]), assumes that the elements bqd,d′ of the coregionalization matrix Bq can be written as
bqd,d′ = υd,d′bq, this is, as a scaled version of the elements bq, which do not depend on the

15

particular output functions fd(x). With this form for bqd,d′ , we have

cov[fd(x), fd′(x′)] =
Q∑
q=1

υd,d′bqkq(x,x′),= υd,d′
Q∑
q=1

bqkq(x,x′)

= υd,d′k(x,x′),

where k(x,x′) =
∑Q
q=1 bqkq(x,x

′). The above expression can be seen as a particular case of
the kernel function obtained from the linear model of coregionalization, with Q = 1. In this
case, the coefficients υd,d′ =

∑R1
i=1 a

i
d,1a

i
d′,1 = b1d,d′ , and the kernel matrix for multiple outputs

can be written as

K(x,x′) = B k(x,x′).

The kernel matrix corresponding to a dataset X takes the form

K(X,X) = B⊗ k(X,X). (20)

One can see that the intrinsic coregionalization model corresponds to the special separa-
ble kernel often used in the context of regularization. Notice that the value of R1 for the
coefficients υd,d′ =

∑R1
i=1 a

i
d,1a

i
d′,1 = b1d,d′ , determines the rank of the matrix B.

As pointed out by [31], the ICM is much more restrictive than the LMC since it assumes
that each basic covariance kq(x,x′) contributes equally to the construction of the autocovari-
ances and cross covariances for the outputs. However, for inference purposes, the inverse
of the covariance matrix K(X,X) can be computed using the properties of the Kronecker
product (as along as the input space follows the isotopic configuration) reducing the com-
putational complexity involved when compared to the matrix inversion of the full covari-
ance matrix K(X,X) obtained from LMC. This property is employed by [74] to speed-up
the inference process in a computer emulator (see later on) for multiple outputs. First, it as-
sumes that the multiple output problem can be seen as a single output problem considering
the output index as another variable of the input space. Then, the predicted output, f(x∗)
is expressed as a weighted sum of Q deterministic regressors that explain the mean of the
output process plus a Gaussian error term that explains the variance in the output. Both, the
set of regressors and the covariance for the error are assumed to be separable in the input
space. The covariance takes the form k(x,x′)kT (d, d′), as in the introduction of section 4.
For isotopic spaces ([74] refers to this condition as regular outputs, meaning outputs that
are evaluated at the same set of inputs X), the mean and covariance for the output, can be
obtained through Kronecker products for the regressors and the covariances involved in the
error term. For inference the inversion of the necessary terms is accomplished using proper-
ties of the Kronecker product. We will see in the next section that the model that replaces the
set of outputs for a single output as described before, can be seen as a particular case of the
intrinsic coregionalization model [19]. It can be shown that if the outputs are considered to
be noise-free, prediction using the intrinsic coregionalization model under an isotopic data
case is equivalent to independent prediction over each output [35]. This circumstance is also
known as autokrigeability [89].

16

4.2.3 Linear Model of Coregionalization in Machine Learning and Statistics

The linear model of coregionalization has already been used in machine learning in the
context of Gaussian processes for multivariate regression and in statistics for computer em-
ulation of expensive multivariate computer codes.

As we have seen before, the linear model of coregionalization imposes the correlation of
the outputs explicitly through the set of coregionalization matrices. A simple idea used in
the early papers of multi-output GPs for machine learning was based on the intrinsic core-
gionalization model and assumed B = ID. In other words, the outputs were considered to
be conditionally independent given the parameters φ. Correlation between the outputs was
assumed to exist implicitly by imposing the same set of hyperparameters φ for all outputs
and estimating those parameters, or directly the kernel matrix k(X,X), using data from all
the outputs [59, 49, 98].

In this section, we review more recent approaches for multiple output modeling that are
different versions of the linear model of coregionalization.

Semiparametric latent factor model. The semiparametric latent factor model (SLFM)
proposed by [83] turns out to be a simplified version of equation (9). In fact it corresponds
to setting Rq = 1 in (17) so that we can rewrite equation (9) as

K(X,X) =
Q∑
q=1

aqa>q ⊗ kq(X,X),

where aq ∈ RD×1 with elements {ad,q}Dd=1 and q fixed. With some algebraic manipulations,
that exploit the properties of the Kronecker product, we can write

K(X,X) =
Q∑
q=1

(aq ⊗ IN)kq(X,X)(a>q ⊗ IN) = (Ã⊗ IN)K̃(Ã> ⊗ IN),

where Ã ∈ RD×Q is a matrix with columns aq and K̃ ∈ RQN×QN is a block diagonal matrix
with blocks given by kq(X,X).

The functions uq(x) are considered to be latent factors and the semiparametric name
comes from the fact that it is combining a nonparametric model, that is a Gaussian process,
with a parametric linear mixing of the functions uq(x). The kernel for each basic process q,
kq(x,x′), is assumed to be of Gaussian type with a different length scale per input dimension.
The informative vector machine (IVM) [51] is employed to speed up computations.

Gaussian processes for Multi-task, Multi-output and Multi-class The intrinsic core-
gionalization model is considered by [9] in the context of multitask learning. The authors
use a probabilistic principal component analysis (PPCA) model to represent the matrix B.
In turn, the spectral factorization in the PPCA model is replaced by an incomplete Cholesky
decomposition to keep numerical stability. The authors also refer to the autokrigeability ef-
fect as the cancellation of inter-task transfer [9]. An application of MTGP for obtaining the
inverse dynamics of a robotic manipulator was presented in [18].
The intrinsic coregionalization model has been also used by [65]. Here the matrix B is as-
sumed to have the spherical parametrisation kind, B = diag(e)S>S diag(e), where e gives a

17

description for the scale length of each output variable and S is an upper triangular matrix
whose i-th column is associated with particular spherical coordinates of points in Ri (for
details see sec. 3.4 [64]). The scalar kernel k is represented through a Matérn kernel, where
different parameterizations allow the expression of periodic and non-periodic terms. Spar-
sification for this model is obtained using an IVM style approach.
In a classification context, Gaussian processes methodology has been restricted to consider
that the outputs are conditionally independent given the hyperparameters φ [59, 95, 49, 78,
98, 73]. Therefore, the kernel matrix K(X,X) takes a block-diagonal form, with blocks given
by (K(Xd,Xd))d,d. Correlation between the outputs is assumed to exist implicitly by impos-
ing the same set of hyperparameters φ for all outputs and estimating those parameters, or
directly the kernel matrices (K(Xd,Xd))d,d, using data from all the outputs [59, 49, 98, 73].
Alternatively, it is also possible to have parameters φd associated to each output [95, 78].

Computer emulation. A computer emulator is a statistical model used as a surrogate
for a computationally expensive deterministic model or computer code, also known as sim-
ulator. Gaussian processes have become the preferred statistical model among computer
emulation practitioners (for a review see [63]). Different Gaussian process emulators have
been recently proposed to deal with several outputs [36, 19, 74]. In [36], the linear model of
coregionalization was used to model images representing the evolution of the implosion of
steel cylinders after using TNT and obtained employing the so called Neddemeyer simula-
tion model (see [36] for further details). The input variable x represents parameters of the
simulation model, while the output is an image of the radius of the inner shell of the cylinder
over a fixed grid of times and angles. In the version of the LMC that the authors employed,
Rq = 1 and the Q vectors aq were obtained as the eigenvectors of a PCA decomposition of
the set of training images.
In [19], the intrinsic coregionalization model is employed for emulating the response of a
vegetation model called the Sheffield Dynamic Global Vegetation Model (SDGVM) [96]. Au-
thors refer to the ICM as the Multiple-Output (MO) emulator. The inputs to the model are
variables related to broad soil, vegetation and climate data, while the outputs are time se-
ries of the index net biome productivity (NBP) measured at different sites. The NBP index
accounts for the residual amount of carbon at a vegetation site after some natural processes
have taken place. In the paper, the authors assume that the outputs correspond to the dif-
ferent sampling time points, so that D = T , being T the number of time points, while each
observation corresponds to a spatial sampling site. As we mentioned before, [74] introduces
an emulator for multiple-outputs that assumes that the set of output variables can be seen
as a single variable while augmenting the input space with an additional index over the out-
puts. In other words, it considers the output variable as an input variable. [19], refer to the
model in [74] as the Time input (TI) emulator and discussed how the TI model turns out to
be a particular case of the MO model that assumes a particular squared-exponential kernel
(see chapter 4 [73]) form for the entries in the coregionalization matrix B.

4.3 Extensions
In this section we describe further developments related to the setting of separable kernels,
both from a regularization and a Bayesian perspective.

18

4.3.1 Extensions within the Regularization Framework

When we consider kernels of the form K(x,x′) = k(x,x′)B, a natural question is whether
the matrix B can be learned from data. In a regression setting, one basic idea is for example
to estimate B in a separate inference step as the covariance matrix of the output vectors in
the training set and indeed this is standard in the geostatistics literature. A further question
is whether we can learn both B and an estimator within a unique inference step. This is the
question tackled in [42]. The author consider a variation of the regularizer in (21) and try
to learn the cluster matrix as a part of the optimization process. More precisely the authors
considered a regularization term of the form

R(f) = ε1‖f‖k + ε2

r∑
c=1

mc‖f c − f‖2k + ε3

r∑
c=1

∑
l∈I(c)

‖f l − f c‖2k. (21)

where we recall that r is the number of clusters. The three terms in the functional can be seen
as: a global penalty, a term penalizing between cluster variance and a term penalizing within
cluster variance. As in the case of the regularizer in (21), the above regularizer is completely
characterized by a cluster matrix M, i.e. R(f) = RM(f) (note that the corresponding matrix
B will be slightly different from (14)).
The idea is then to consider a regularized functional

D∑
i=1

1
N

N∑
i=1

(fj(xi)− yj,i)2 + λRM(f). (22)

to be minimized jointly over f and M (see [42] for details). The above problem is typically
non tractable from a computational point of view, so the authors in [42] propose a relaxation
of the problem which can be proved to be convex.

A different approach is taken in [3] and [4]. In this case the idea is that only a a small
subset of features is useful to learn all the components/tasks. In the simplest case the authors
propose to minimize a functional of the form

D∑
d=1

{
1
N

N∑
i=1

(w>d U
>xi − yd,i)2 + λw>d wd

}
.

over w1, . . . ,wD ∈ Rp, U ∈ RD×D under the constraint Tr(U>t Ut) ≤ γ. Note that the min-
imization over the matrix U couple the otherwise disjoint component-wise problems. The
authors of [3] discuss how the above model is equivalent to consider a kernel of the form

K(x,x′) = kD(x,x′)I, kD(x,x′) = x>Dx′

where D is a positive definite matrix and a model which can be described components wise
as

fd(x) =
p∑
i=1

ad,ixj = a>d x.

In fact it is possible to show that the above minimization problem is equivalent to minimiz-
ing

D∑
d=1

1
N

N∑
i=1

(a>d xi − yd,i)2 + λ
D∑
d=1

a>d Da>d , (23)

19

over a′1, . . . ,a′D ∈ Rp and Tr(D) ≤ 1, where the last restriction is a convex approximation
of the low rank requirement. Note that from a Bayesian perspective the above scheme can
be interpreted as learning a covariance matrix for the response variables which is optimal
for all the tasks. In [3], the authors consider in fact a more general general setting where
D is replaced by F (D) and shows that if the matrix valued function F is matrix concave,
then induced minimization problem is jointly convex in (ai) and D. Moreover the authors
discuss how to extend the above framework to the case of more general kernel functions. It
is worth noting that an approach similar to the one we just described is at the basis of recent
work exploiting the concept of sparsity while solving multiple tasks. These latter methods
in general cannot be cast in the framework of kernel methods and we refer the interested
reader to [62] and references therein.
In the above reasoning the key assumption is that a response variable is either important for
all the tasks or not. In practice it is probably often the case that only certain subgroups of
tasks share the same variables. This idea is at the basis of the study in [4], where the authors
design an algorithm to learn at once the group structure and the best set of variables for
each groups of tasks. Let G = (Gt)>t=1 be a partition of the set of components/tasks, where
Gt denotes a group of tasks and |Gt| ≤ D. Then the author propose to consider a functional
of the form

min
G

∑
Gt∈G

min
ad,d∈Gt,Ut

∑
d∈Gt

{
1
N

N∑
i=1

(a>d U
>
t xi − yd,i)2 + λw>d w>d

+ γTr(U>t Ut)
}
,

where U1, . . . UT is a sequence of p by p matrices. The authors show that while the above
minimization problem is not convex, stochastic gradient method can be used to find local
minimizers which seems to perform well in practice.

4.3.2 Extensions in the Bayesian Framework

Recent extensions of the linear model of coregionalization include a nonstationary version in
which the coregionalization matrices are allowed to vary as a function of the input variable
[28], and the expression of the output covariance function through a linear combination of
nonorthogonal latent functions [33].

In [28], the coregionalization matrices Bq now depend on the input variable x, this is,
Bq(x,x′). The authors refer to this model as the spatially varying LMC (SVLMC). As a model
for the varying coregionalization matrix Bq(x, ,x′), the authors employ two alternatives. In
one of them, they assume that Bq(x,x′) = (α(x,x′))ψBq, where α(x) is a covariate of the
input variable and ψ is a variable that follows a uniform prior. As a different alternative,
Bq(x,x′) follows a Wishart spatial process, which is constructed using the definition of a
Wishart distribution. Suppose Z ∈ RD×P is a random matrix with entries zd,p ∼ N (0, 1), in-
dependently and identically distributed, for d = 1, . . . , D and p = 1, . . . , P . Define the matrix
Υ = ΓZ, with Γ ∈ RD×D. The matrix Ω = ΥΥ> = ΓZZ>Γ> ∈ RD×D follows a Wishart dis-
tributionW(P,ΓΓ>), where P is known as the number of degrees of freedom of the distribution.
The spatial Wishart process is constructed assuming that zd,p depends on the input x, this is,
zd,p(x,x′), with zd,p(x,x′) ∼ N (0, ρd(x,x′)), where {ρd(x,x′)}Dd=1 are correlation functions.

20

Matrix Υ(x,x′) = ΓZ(x,x′) and Ω(x,x′) = Υ(x,x′)Υ>(x,x′) = ΓZ(x,x′)Z>(x,x′)Γ> ∈
RD×D follows a spatial Wishart process SW(P,ΓΓ>, {ρd(x,x′)}Dd=1). In [28], authors assume
Γ = I and ρd(x,x′) is the same for all values of d. Inference in this model is accomplished
using Markov chain Monte Carlo. For details about the particular inference procedure, the
reader is referred to [28].

A different extension is due to [33], in which the basic processes uiq(x) are assumed to be
nonorthogonal, leading to the following covariance function

cov[f(x), f(x′)] =
Q∑
q=1

Q∑
q′=1

Bq,q′kq,q′(x,x′),

where Bq,q′ are cross-coregionalization matrices. Cross-covariances kq,q′(x,x′) can be nega-
tive (while keeping positive semidefiniteness for cov[f(x), f(x′)]), allowing negative cross-
covariances in the linear model of coregionalization. The authors argue that, in some real
scenarios, a linear combination of several correlated attributes are combined to represent a
single model and give examples in mining, hydrology and oil industry [33].

5 Beyond Separable Kernels
Working with separable kernels is appealing for their simplicity, but can be limiting in sev-
eral applications. Next we review different class of kernels beyond the separable case.

5.1 Invariant Kernels
Divergence free and curl free fields. The following two kernels are matrix valued ra-
dial basis functions (RBF) [61] and can be used to estimate divergence-free or curl-free vector
fields [54] when the input and output space have the same dimension. These kernels induce
a similarity between the vector field components that depends on the input points, and
therefore cannot be reduced to the form K(x,x′) = k(x,x′)B.

The divergence-free matrix-valued kernel can be defined via a translation invariant matrix-
valued RBF

Φ(u) = (∇∇> −∇>∇I)φ(u) = Hφ(u)− tr(Hφ(u))I ,

where H is the Hessian operator and φ a scalar RBF, so that K(x,x′) := Φ(x− x′).

The columns of the matrix valued RBF Φ are divergence-free. In fact, computing the
divergence of a linear combination of its columns, ∇>(Φ(u)c), with c ∈ Rd, it is possible to
show that [6]

∇>(Φ(u)c) = (∇>∇∇>φ(u))c− (∇>∇>∇φ(u))c = 0 ,

where the last equality follows applying the product rule of the gradient, the fact that the
coefficient vector c does not depend upon u and the equality a>aa> = a>a>a,∀a ∈ Rd.
Choosing a Gaussian RBF, we obtain the divergence-free kernel

K(x,x′) =
1
σ2
e−
‖x−x′‖2

2σ2 Ax,x′ (24)

21

where

Ax,x′ =

((
x− x′

σ

)(
x− x′

σ

)>
+

(
(d− 1)− ‖x− x′‖2

σ2

)
I

)
.

The curl-free matrix valued kernels are obtained as

K(x,x′) := Ψ(x− x′) = −∇∇>φ(x− x′) = −Hφ(x− x′) ,

where φ is a scalar RBF.
It is easy to show that the columns of Ψ are curl-free. The j-th column of Ψ is given by

Ψej , where ej
is the standard basis vector with a one in the j-th position. This gives us

Φcfej = −∇∇>Φcfej = ∇(−∇>Φcfej) = ∇g ,

where g = −∂φ/∂xj . g is a scalar function and the curl of the gradient of a scalar function is
always zero.

Choosing a Gaussian RBF, we obtain the following curl-free kernel

Γcf (x, x′) =
1
σ2
e−
‖x−x′‖2

2σ2

(
I−

(
x− x′

σ

)(
x− x′

σ

)>)
. (25)

It is possible to consider a convex linear combination of these two kernels to obtain a kernel
for learning any kind of vector field, while at the same time allowing to reconstruct the
divergence-free and curl-free parts separately (see [54]). The interested reader can refer to
[61, 53, 27] for further details on matrix-valued RBF and the properties of divergence-free
and curl-free kernels.

Transformable kernels. Another example of invariant kernels is discussed in [14] and is
given by kernels defined by transformations. For the purpose of our discussion, let Y = RD,
X0 be a Hausdorff space and Td a family of maps (not necessarily linear) from X to X0 for
d = {1, . . . , D} .
Then, given a continuous scalar kernel k : X0×X0 → R, it is possible to define the following
matrix valued kernel for any x,x′ ∈ X(

K(x,x′)
)
d,d′

= k(Tdx, Td′x′).

5.2 Process convolutions
Non-separable kernels can also be constructed from a generative point of view. We saw in
section 4.2.1 that the linear model of coregionalization involve some form of instantaneous
mixing through a linear weighted sum of independent processes to construct correlated pro-
cesses. By instantaneous mixing we mean that the output function f(x) evaluated at the in-
put point x only depends on the values of the latent functions {uq(x)}Qq=1 at the same input
x. This instantaneous mixing leads to a kernel function for vector-valued functions that has
a separable form.

22

Instantaneous mixing has some limitations. If we wanted to model two output processes
in such a way that one process was a blurred version of the other, we cannot achieve this
through instantaneous mixing. We can achieve blurring through convolving a base process
with a smoothing kernel.4 If the base process is a Gaussian process, it turns out that the con-
volved process is also a Gaussian process. We can therefore exploit convolutions to construct
covariance functions [7, 87, 37, 38].

In a similar way to the linear model of coregionalization, we consider Q groups of func-
tions, where a particular group q has elements uiq(z), for i = 1, . . . , Rq. Each member of the
group has the same covariance kq(x,x′), but is sampled independently. Any output fd(x) is
described by

fd(x) =
Q∑
q=1

Rq∑
i=1

∫
X
Gid,q(x− z)uiq(z)dz + wd(x) =

Q∑
q=1

f qd (x) + wd(x),

where

f qd (x) =
Rq∑
i=1

∫
X
Gid,q(x− z)uiq(z)dz, (26)

and {wd(x)}Dd=1 are independent Gaussian processes with mean zero and covariance kwd(x,x
′).

For the integrals in equation (26) to exist, it is assumed that each kernel Gid,q(x) is a contin-
uous function with compact support [40] or square-integrable [87, 38]. The kernel Gid,q(x)
is also known as the moving average function [87] or the smoothing kernel [38]. We have
included the superscript q for f qd (x) in (26) to emphasize the fact that the function depends
on the set of latent processes {uiq(x)}Rqi=1. The latent functions uiq(z) are Gaussian processes
with general covariances kq(x,x′).

Under the same independence assumptions used in the linear model of coregionaliza-
tion, the covariance between fd(x) and fd′(x′) follows

(K(x,x′))d,d′ =
Q∑
q=1

kfq
d
,fq
d′

(x,x′) + kwd(x,x
′)δd,d′ , (27)

where

kfq
d
,fq
d′

(x,x′) =
Rq∑
i=1

∫
X
Gid,q(x− z)

∫
X
Gid′,q(x

′ − z′)kq(z, z′)dz′dz. (28)

Specifying Gid,q(x − z) and kq(z, z′) in the equation above, the covariance for the outputs
fd(x) can be constructed indirectly. Notice that if the smoothing kernels are taken to be
the Dirac delta function in equation (28), such that Gid,q(x − z) = aid,qδ(x − z),5 the double
integral is easily solved and the linear model of coregionalization is recovered. The process
convolution framework is therefore a generalization of the linear model of coregionalization.

4We use kernel to refer to both reproducing kernels and smoothing kernels. Smoothing kernels are functions
which are convolved with a signal to create a smoothed version of that signal.

5We have slightly abused of the delta notation to indicate the Kronecker delta for discrete arguments and the
Dirac function for continuous arguments. The particular meaning should be understood from the context.

23

0 0.5 1
−5

0

5

10

ICM, f1(x)
0 0.5 1

−20

−10

0

10

PC, f1(x)

0 0.5 1
−4

−2

0

2

4

ICM, f2(x)
0 0.5 1

−5

0

5

10

PC, f2(x)

Figure 1: Two samples from two kernel matrices obtained using the intrinsic coregionaliza-
tion model (first column) and the process convolution formalism (second column). The solid
lines represent one of the samples obtained from each model. The dashed lines represent the
other sample. There are two outputs, one row per output. Notice that for the ICM, the out-
puts have the same length-scale and differ only in their variance. The outputs generated
from the process convolution covariance not only differ in their variance but also in their
relative length-scale.

24

Figure 1 shows an example of the instantaneous mixing effect obtained in the LMC, par-
ticularly in the ICM, and the non-instantaneous mixing effect due to the process convolution
framework. We sampled twice from a two-output Gaussian process with an ICM covariance
(first column) and a process convolution covariance (second column). It can be noticed that
while the length-scales for the ICM-GP samples are the same, the length-scales from the
PC-GP samples are different.

A recent review of several extensions of this approach for the single output case is pre-
sented in [13]. Applications include the construction of nonstationary covariances [37, 39,
25, 26, 66] and spatiotemporal covariances [94, 92, 93].

The idea of using convolutions for constructing multiple output covariances was origi-
nally proposed by [87]. They assumed that Q = 1, Rq = 1, that the process u(x) was white
Gaussian noise and that the input space was X = Rp. [38] depicted a similar construction to
the one introduced by [87], but partitioned the input space into disjoint subsetsX =

⋂D
d=0Xd,

allowing dependence between the outputs only in certain subsets of the input space where
the latent process was common to all convolutions.6

Higdon [38] coined the general moving average construction to develop a covariance
function in equation (26) as a process convolution.

Boyle and Frean [11, 12] introduced the process convolution approach for multiple out-
puts to the machine learning community with the name of “Dependent Gaussian Processes”
(DGP), further developed in [10]. They allow the number of latent functions to be grater
than one (Q ≥ 1). In [50] and [2], the latent processes {uq(x)}Qq=1 followed a more general
Gaussian process that goes beyond the white noise assumption.

Process convolutions with latent functions following general Gaussian processes can also
be seen as a dynamic version of the linear model of coregionalization: the latent functions
are dynamically combined with the help of the kernel smoothing functions, as opposed to
the static combination of the latent functions in the LMC case.

5.2.1 Comparison between process convolutions and LMC

The choice of a kernel corresponds to specifying dependencies among inputs and outputs.
In the linear model of co-regionalization this is done considering separately inputs–via the
kernels kq–and outputs– via the coregionalization matrices Bq, for q = 1, . . . , Q. Having a
large large value of Q allows for a larger expressive power of the model. For example if
the output components are substantially different functions (different smoothness or length
scale), we might be able to capture their variability by choosing a sufficiently largeQ. Clearly
this is at the expense of a larger computational burden.

On the other hand, the process convolution framework attempts to model the variance
of the set of outputs by the direct association of a different smoothing kernel Gd(x) to each
output fd(x). By specifying Gd(x), one can model, for example, the degree of smoothness
and the length-scale that characterizes each output. If each output happens to have more
than one degree of variation (marginally, it is a sum of functions of varied smoothness) one
is faced with the same situation as in LMC, namely, the need to augment the parameter space
so as to satisfy a required precision. However, due to the local description of each output

6The latent process u(x) was assumed to be independent on these separate subspaces.

25

that the process convolution performs, it is likely that the parameter space for the process
convolution approach grows slower than the parameter space for LMC.

5.2.2 Other approaches related to process convolutions

In [55], a different moving average construction for the covariance of multiple outputs was
introduced. It is obtained as a convolution over covariance functions in contrast to the pro-
cess convolution approach where the convolution is performed over processes. Assuming
that the covariances involved are isotropic and the only latent function u(x) is a white Gaus-
sian noise, [55] show that the cross-covariance obtained from

cov [fd(x + h), fd′(x)] =
∫
X
kd(h− z)kd′(z)dz,

where kd(h) and kd′(h) are covariances associated to the outputs d and d′, lead to a valid
covariance function for the outputs {fd(x)}Dd=1. If we assume that the smoothing kernels
are not only square integrable, but also positive definite functions, then the covariance con-
volution approach turns out to be a particular case of the process convolution approach
(square-integrability might be easier to satisfy than positive definiteness).

[60] introduced the idea of transforming a Gaussian process prior using a discretized pro-
cess convolution, fd = Gdu, where Gd ∈ RN×M is a so called design matrix with elements
{Gd(xn, zm)}N,Mn=1,m=1 and u> = [u(x1), . . . , u(xM)]. Such transformation could be applied
for the purposes of fusing the information from multiple sensors, for solving inverse prob-
lems in reconstruction of images or for reducing computational complexity working with the
filtered data in the transformed space [81]. Convolutions with general Gaussian processes
for modelling single outputs, were also proposed by [25, 26], but instead of the continuous
convolution, [25, 26] used a discrete convolution. The purpose in [25, 26] was to develop a
spatially varying covariance for single outputs, by allowing the parameters of the covariance
of a base process to change as a function of the input domain.

Process convolutions are closely related to the Bayesian kernel method [69, 52] to con-
struct reproducible kernel Hilbert spaces (RKHS) assigning priors to signed measures and
mapping these measures through integral operators. In particular, define the following
space of functions,

F =
{
f
∣∣∣f(x) =

∫
X
G(x, z)γ(dz), γ ∈ Γ

}
,

for some space Γ ⊆ B(X) of signed Borel measures. In [69, proposition 1], the authors show
that for Γ = B(X), the space of all signed Borel measures, F corresponds to a RKHS. Ex-
amples of these measures that appear in the form of stochastic processes include Gaussian
processes, Dirichlet processes and Lévy processes. In principle, we can extend this frame-
work for the multiple output case, expressing each output as

fd(x) =
∫
X
Gd(x, z)γ(dz).

26

6 Inference and Computational Considerations
Practical use of multiple-output kernel functions require the tuning of the hyperparameters,
and dealing with the computational burden related directly with the inversion of matrices
of dimension ND×ND. Cross-validation and maximization of the log-marginal likelihood
are alternatives for parameter tuning, while matrix diagonalization and reduced-rank ap-
proximations are choices for overcoming computational complexity.

In this section we refer to the parameter estimation problem for the models presented in
section 4 and 5 and also to the computational complexity problem when using those models
in practice.

6.1 Estimation of parameters in regularization theory
From a regularization perspective, once the kernel is fixed, to find a solution we need to
solve the linear system defined in (5). The regularization parameter as well as the possible
kernel parameters are typically tuned via cross-validation. The kernel free-parameters are
usually reduced to one or two scalars (e.g. the width of a scalar kernel). While considering
for example separable kernels the matrix B is fixed by design, rather than learned, and the
only free parameters are those of the scalar kernel.

Solving problem (5), this is c = (K(X,X) + λNI)−1y, is in general a costly operation
both in terms of memory and time. When we have to solve the problem for a single value
of λ Cholesky decomposition is the method of choice, while when we want to compute the
solution for different values of λ (for example to perform cross validation) singular valued
decomposition (SVD) is the method of choice. In both case the complexity in the worst case
is O(D3N3) (with a larger constant for the SVD) and the associated storage requirement is
O(D2N2)

As observed in [6], this computational burden can be greatly reduced for separable ker-
nels. For examples, if we consider the kernel K(x,x′) = k(x,x′)I the kernel matrix K(X,X)
becomes block diagonal. In particular if the input points are the same, all the blocks are the
equal and the problem reduces to inverting an N by N matrix. The simple example above
serves as a prototype for the more general case of a kernel of the form K(x,x′) = k(x,x′)B.
The point is that for this class of kernels, we can use the eigen-system of the matrix B to
define a new coordinate system where the kernel matrix becomes block diagonal.

We start observing that if we denote with (σ1,u1), . . . , (σD,uD) the eigenvalues and
eigenvectors of B we can write the matrix C = (c1, . . . , cN), with ci ∈ RD, as C =

∑D
d=1 c̃d⊗

ud, where c̃d = (〈c1,ud〉D , . . . , 〈cN ,ud〉D) and ⊗ is the tensor product and similarly Ỹ =∑D
d=1 ỹd ⊗ ud, with ỹd = (〈yd,ud〉D , . . . , 〈yN ,ud〉D). The above transformations are simply

rotations in the output space. Moreover, for the considered class of kernels, the kernel ma-
trix K(X,X) is given by the tensor product of the N × N scalar kernel matrix k(X,X) and
B, that is K(X,X) = B⊗ k(X,X).

27

Then we have the following equalities

C = (k(X,X) +NλNI)−1Y =
D∑
d=1

(k(X,X)⊗B +NλNI)−1)ỹd ⊗ ud

=
D∑
d=1

(σdk(X,X) +NλNI)−1ỹd ⊗ ud.

Since the eigenvectors uj are orthonormal, it follows that:

c̃d = (σdk(X,X) +NλNI)−1ỹj = (k(X,X) +
λN
σd

I)−1 ỹd

σd
, (29)

for d = 1, . . . , D. The above equation shows that in the new coordinate system we have
to solve D essentially independent problems after rescaling each kernel matrix by σd or
equivalently rescaling the regularization parameter (and the outputs). The above calcula-
tion shows that all kernels of this form allow for a simple implementation at the price of
the eigen-decomposition of the matrix B. Then we see that the computational cost is now
essentially O(D3) +O(N3) as compared to O(D3N3) in the general case. Also, it shows that
the coupling among the different tasks can be seen as a rotation and rescaling of the output
points.

6.2 Estimation of parameters in Gaussian processes literature
In the Gaussian processes machine learning literature for regression, the maximization of
the marginal likelihood has become the preferred method among practitioners for estimat-
ing parameters. The method also goes by the names of evidence approximation, type II
maximum likelihood, empirical Bayes, among others [8].

With a Gaussian likelihood and after integrating f using the Gaussian prior, the marginal
likelihood is given by

p(y|X,φ) = N (y|0,K(X,X) + Σ), (30)

where φ are the hyperparameters.
The objective function is the logarithm of the marginal likelihood

log p(y|X,φ) = −1
2
y>(K(X,X)+Σ)−1y − 1

2
log |K(X,X) + Σ|

− ND

2
log 2π. (31)

The parameters φ are obtained by maximizing log p(y|X,φ) with respect to each element in
φ, using gradient based methods. Derivatives follow

∂ log p(y|X,φ)
∂φi

=
1
2
y>K(X,X)

−1∂K(X,X)
∂φi

K(X,X)
−1

y

− 1
2

trace

(
K(X,X)

−1∂K(X,X)
∂φi

)
, (32)

28

where φi is an element of the vector φ and K(X,X) = K(X,X) + Σ. In the case of the LMC,
in which the coregionalization matrices must be positive semidefinite, it is possible to use
an incomplete Cholesky decomposition Bq = L̃qL̃>q , with L̃q ∈ RD×Rq , as suggested in [9].
The elements of the matrices Lq are considered part of the vector φ.

Another method used for parameter estimation, more common in the geostatistics liter-
ature, consists of optimizing an objective function which involves some empirical measure
of the correlation between the functions fd(x), K̂(x,x′), and the multivariate covariance ob-
tained using a particular model, K(x,x′) [32, 47, 68]. Assuming stationary covariances, this
criteria reduces to

WSS =
N∑
i=1

w(hi) trace
{[(

K̂(hi)−K(hi)
)]2}

, (33)

where hi = xi − x′i is a lag vector, w(hi) is a weight coefficient, K̂(hi) is an experimental co-
variance matrix with entries obtained by different estimators for cross-covariance functions
[67, 87], and K(hi) is the covariance matrix obtained, for example, using the linear model
of coregionalization.7 One of the first algorithms for estimating the parameter vector φ in
LMC was proposed by [32]. It assumed that the parameters of the basic covariance functions
kq(x,x′) had been determined a priori and then used a weighted least squares method to fit
the coregionalization matrices. In [68] the efficiency of other least squares procedures was
evaluated experimentally, including ordinary least squares and generalized least squares.
Other more general algorithms in which all the parameters are estimated simultaneously
include simulated annealing [48] and the EM algorithm [99]. [87] also proposed the use of
an objective function like (33), to estimate the parameters in the covariance obtained from a
process convolution.

Both methods described above, the evidence approximation or the least-square method,
give point estimates of the parameter vector φ. Several authors have employed full Bayesian
inference by assigning priors to φ and computing the posterior distribution through some
sampling procedure. Examples include [36] and [19] under the LMC framework or [11] and
[85] under the process convolution approach.

As mentioned before, for non-Gaussian likelihoods, there is not a closed form solution
for the posterior distribution nor for the marginal likelihood. However, the marginal likeli-
hood can be approximated under a Laplace or expectation propagation (EP) approximation
frameworks for multiple output classification and used to find estimates for the hyperpa-
rameters. Hence, the error function is replaced for log q(y|X,φ), where q(y|X,φ) is the ap-
proximated marginal likelihood. Parameters are again estimated using a gradient descent
method.

On the other hand, the problem of computational complexity for Gaussian processes in
the multiple output context has been studied by different authors [88, 83, 10, 2, 1]. Basically,
the computational problem is exactly the same than the one appearing in regularization

7Note that the common practice in geostatistics is to work with variograms instead of covariances. A variogram
characterizes a general class of random functions known as intrinsic random functions [56], which are random
processes whose increments follow a stationary second-order process. For clarity of exposition, we will avoid the
introduction of the variogram and its properties. The interested reader can follow the original paper by [56] for a
motivation of their existence, [30] for a comparison between variograms and covariance functions and [31] for a
definition of the linear model of coregionalization in terms of variograms.

29

theory, that is, the inversion of the matrix K(X,X) = K(X,X) + Σ for solving equation (5),
for computing the marginal likelihood and its derivatives (usually needed for estimating the
hyperparameters as explained before) or for computing the predictive distribution.

ver Hoef et al [88] presents a simulation example with D = 2. Prediction over one of
the variables is performed using cokriging. In cokriging scenarios, usually one has access
to a few measurements of a primary variable, but plenty of observations for a secondary
variable. In geostatistics, for example, predicting the concentration of heavy pollutant met-
als (say Cadmium or Lead), which are expensive to measure, can be done using inexpen-
sive and oversampled variables as a proxy (say pH levels) [31]. Following a suggestion by
[82] (page 172), the authors partition the secondary observations into subgroups of obser-
vations and assume the likelihood function is the sum of the partial likelihood functions
of several systems that include the primary observations and each of the subgroups of the
secondary observations. In other words, the joint probability distribution p(f1(X1), f2(X2))
is factorised as p(f1(X1), f2(X2)) =

∏J
j=1 p(f1(X1), f (j)

2 (X(j)
2)), where f (j)

2 (X(j)
2) indicates

the observations in the subgroup j out of J subgroups of observations, for the secondary
variable.

Also, the authors use a fast Fourier transform for computing the autocovariance matrices
(K(Xd,Xd))d,d and cross-covariance matrices (K(Xd,Xd′))d,d′ .

Boyle [10] proposed an extension of the reduced rank approximation method presented by
[71], to be applied to the Dependent Gaussian process construction. The author outlined the
generalization of the methodology for D = 2. The outputs f1(X1) and f2(X2) are defined as[

f1(X1)
f2(X2)

]
=

[
(K(X1,X1))1,1 (K(X1,X2))1,2
(K(X2,X1))2,1 (K(X2,X2))2,2

] [
w̃1

w̃2

]
,

where w̃d are vectors of weights associated to each output including additional weights cor-
responding to the test inputs, one for each output. Based on this likelihood, a predictive
distribution for the joint prediction of f1(X) and f2(X) can be obtained, with the character-
istic that the variance for the approximation, approaches to the variance of the full predictive
distribution of the Gaussian process, even for test points away from the training data. The
elements in the matrices (K(Xd,Xd′))d,d′ are computed using the covariances and cross-
covariances developed in sections 4 and 5.

In [2], the authors show how through making specific conditional independence assump-
tions, inspired by the model structure in the process convolution formulation (for which the
LMC is a special case), it is possible to arrive at a series of efficient approximations that repre-
sent the covariance matrix K(X,X) using a reduced rank approximation Q plus a matrix D,
where D has a specific structure that depends on the particular independence assumption
made to obtain the approximation. Approximations can reduce the computational complex-
ity to O(NDM2) and storage to O(NDM) with M representing a user specified value that
determines the rank of Q. Approximations obtained in this way, have similarities with the
conditional approximations summarized for a single output in [72].

Finally, the informative vector machine (IVM) [51] has also been extended to Gaussian
processes using kernel matrices derived from particular versions of the linear model of core-
gionalization, including [83] and [49]. In the IVM, only a subset of the datapoints is chosen
for computing the kernel matrix. The data points selected are the ones that maximize a
differential entropy score [51].

30

7 Discussion
We have presented a survey of kernel functions to be used in kernel methods including
regularization theory and Gaussian processes. From the regularization theory point of view,
the multiple output problem can be seen as a discriminative method that minimizes directly
a loss function while constraining the parameters of the learned vector-valued function. In a
Gaussian process framework from a machine learning context, the multiple output problem
is equivalent to formulate a generative model for each output that expresses correlations as
functions of the output function index and the input space, using a set of common latent
functions.

We presented two general families of kernels for vector-valued functions including the
separable family and different instantiations of what we would call the nonseparable family.
The separable family represent the kernel function as the product of a kernel for the outputs,
independently of the value that the input can have, and a kernel function for the input space,
independently of the output index. The most general model is the linear model of coregion-
alization, with many other kernel functions that appear in the machine learning literature
as particular cases. Within the family of nonseparable kernels, the process convolution con-
struction has proved useful for several theoretical and applied problems and as we have
seen before, it can be considered as a generalization of the linear model of coregionalization.

Model selection establish a path for future research in multiple-output kernels related
problems. From a Bayesian perspective, in the setup of LMC and process convolutions,
model selection includes principled mechanisms to find the number of latent functions
and/or the rank of the coregionalization matrices. More general model selection problems
involve the ability to test if given some data, the outputs are really correlated or influence
each other, compared to the simpler assumption of independence or no transfer setup. Other
model selection problem includes the influence of the input space configuration (isotopic
against heterotopic) towards the sharing of strengths between outputs. Although such prob-
lems have been studied to some extent in the geostatistics literature, these concerns are far
to be solved yet.

acknowledgements
LR would like to thank Luca Baldassarre and Tomaso Poggio for many useful discussions.
This work was supported in part by the IST Programme of the European Community, under
the PASCAL2 Network of Excellence, IST-2007-216886. Thanks to PASCAL 2 support the au-
thors of this paper organized two workshops: Statistics and Machine Learning Interface Meet-
ing (see http://intranet.cs.man.ac.uk/mlo/slim09/), during 23-24 of July, 2009
at Manchester, UK and Kernels for Multiple Outputs and Multi-task Learning: Frequentist and
Bayesian Points of View (see http://intranet.cs.man.ac.uk/mlo/mock09/) held on
December 12 at Whistler, Canada as part as one of the Workshops of NIPS 2009. This publi-
cation only reflects the authors’ views.

31

Notation

p dimensionality of the input space
D number of outputs
N,Nd number of data points for output d
Q number of latent functions (for generative models)
X input space
Xd input training data for output d, Xd = {xd,n}Ndn=1

X input training data for all outputs, X = {Xd}Dd=1

Functions

k(x,x′) general scalar kernel
K(x,x′) general kernel valued matrix with entries

(K(x,x′))d,d′ with d, d = 1, . . . , D
kq(x,x′) scalar kernel for the q−th latent function
fd(x) d-th output evaluated at x
f(x), vector-valued function, f(x) = [f1(x), . . . , fD(x)]>

δk,k′ Kronecker delta for discrete arguments
δ(x) Dirac delta for continuous arguments

Vectors and matrices

kq(X,X) kernel matrix with entries kq(x,x′) evaluated at X
fd(Xd) fd(x) evaluated at Xd, fd = [fd(xd,1), . . . , fd(xd,Nd)]

>

f(X) vectors {fd}Dd=1, stacked in a column vector
(K(Xd,Xd′))d,d′kernel matrix with entries (K(xd,n,xd′,m))d,d′ with

xd,n ∈ Xd and xd′,m ∈ Xd′

K(X,X) kernel matrix with blocks (K(Xd,Xd′))d,d′ with
d, d′ = 1, . . . , D

IN identity matrix of size N

References
[1] Mauricio A. Álvarez. Convolved Gaussian Process Priors for Multivariate Regression with

Applications to Dynamical Systems. PhD thesis, School of Computer Science, University
of Manchester, Manchester, UK, 2011.

[2] Mauricio A. Álvarez and Neil D. Lawrence. Sparse convolved Gaussian processes for
multi-output regression. In Koller et al. [46], pages 57–64.

[3] Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. Convex multi-task
feature learning. Machine Learning, 73(3):243–272, 2008.

[4] Andreas Argyriou, Andreas Maurer, and Massimiliano Pontil. An algorithm for trans-
fer learning in a heterogeneous environment. In ECML/PKDD (1), pages 71–85, 2008.

32

[5] N. Aronszajn. Theory of reproducing kernels. Trans. Amer. Math. Soc., 68:337–404, 1950.

[6] L. Baldassarre, L. Rosasco, A. Barla, and A. Verri. Multi-output learning via spectral
filtering. Technical report, Massachusetts Institute of Technology, 2011. MIT-CSAIL-
TR-2011-004, CBCL-296.

[7] Ronald Paul Barry and Jay M. Ver Hoef. Blackbox kriging: spatial prediction with-
out specifying variogram models. Journal of Agricultural, Biological and Environmental
Statistics, 1(3):297–322, 1996.

[8] Christopher M. Bishop. Pattern Recognition and Machine Learning. Information Science
and Statistics. Springer, 2006.

[9] Edwin V. Bonilla, Kian Ming Chai, and Christopher K. I. Williams. Multi-task Gaussian
process prediction. In John C. Platt, Daphne Koller, Yoram Singer, and Sam Roweis,
editors, NIPS, volume 20, Cambridge, MA, 2008. MIT Press.

[10] Phillip Boyle. Gaussian Processes for Regression and Optimisation. PhD thesis, Victoria
University of Wellington, Wellington, New Zealand, 2007.

[11] Phillip Boyle and Marcus Frean. Dependent Gaussian processes. In Saul et al. [75],
pages 217–224.

[12] Phillip Boyle and Marcus Frean. Multiple output Gaussian process regression. Tech-
nical Report CS-TR-05/2, School of Mathematical and Computing Sciences, Victoria
University, New Zealand, 2005.

[13] Catherine A. Calder and Noel Cressie. Some topics in convolution-based spatial mod-
eling. In Proceedings of the 56th Session of the International Statistics Institute, August 2007.

[14] A. Caponnetto, C.A. Micchelli, M. Pontil, and Y. Ying. Universal kernels for multi-task
learning. Journal of Machine Learning Research, 9:1615–1646, 2008.

[15] C. Carmeli, E. De Vito, and A. Toigo. Vector valued reproducing kernel Hilbert spaces
of integrable functions and Mercer theorem. Anal. Appl. (Singap.), 4(4):377–408, 2006.

[16] Rich Caruana. Multitask learning. Machine Learning, 28:41–75, 1997.

[17] Kian Ming Chai. Generalization errors and learning curves for regression with multi-
task Gaussian processes. In Yoshua Bengio, Dale Schuurmans, John Laferty, Chris
Williams, and Aron Culotta, editors, NIPS, volume 22, pages 279–287. MIT Press, Cam-
bridge, MA, 2010.

[18] Kian Ming A. Chai, Christopher K. I. Williams, Stefan Klanke, and Sethu Vijayakumar.
Multi-task Gaussian process learning of robot inverse dynamics. In Koller et al. [46],
pages 265–272.

[19] Stefano Conti and Anthony O’Hagan. Bayesian emulation of complex multi-output and
dynamic computer models. Journal of Statistical Planning and Inference, 140(3):640–651,
2010.

[20] Noel A. C. Cressie. Statistics for Spatial Data. John Wiley & Sons (Revised edition), USA,
1993.

[21] F. Cucker and S. Smale. On the mathematical foundations of learning. Bull. Amer. Math.
Soc. (N.S.), 39(1):1–49 (electronic), 2002.

33

[22] E. De Vito, L. Rosasco, A. Caponnetto, M. Piana, and A. Verri. Some properties of
regularized kernel methods. Journal of Machine Learning Research, 5:1363–1390, 2004.

[23] T. Evgeniou, C. A. Micchelli, and M. Pontil. Learning multiple tasks with kernel meth-
ods. Journal of Machine Learning Research, 6:615–637, 2005.

[24] Theodoros Evgeniou, Charles A. Micchelli, and Massimiliano Pontil. Learning multiple
tasks with kernel methods. Journal of Machine Learning Research, 6:615–637, 2005.

[25] Montserrat Fuentes. Interpolation of nonstationary air pollution processes: a spatial
spectral approach. Statistical Modelling, 2:281–298, 2002.

[26] Montserrat Fuentes. Spectral methods for nonstationary spatial processes. Biometrika,
89(1):197–210, 2002.

[27] E.J. Fuselier Jr. Refined error estimates for matrix-valued radial basis functions. PhD thesis,
Texas A&M University, 2006.

[28] Alan E. Gelfand, Alexandra M. Schmidt, Sudipto Banerjee, and C.F. Sirmans. Non-
stationary multivariate process modeling through spatially varying coregionalization.
TEST, 13(2):263–312, 2004.

[29] F. Girosi and T. Poggio. Networks and the best approximation property. Biological
Cybernetics, 63:169–176, 1989.

[30] Tilmann Gneiting, Zoltán Sasvári, and Martin Schlather. Analogies and correspon-
dences between variograms and covariance functions. Advances in Applied Probability,
33(3):617–630, 2001.

[31] Pierre Goovaerts. Geostatistics For Natural Resources Evaluation. Oxford University Press,
USA, 1997.

[32] Michel Goulard and Marc Voltz. Linear coregionalization model: Tools for estimation
and choice of cross-variogram matrix. Mathematical Geology, 24(3):269–286, 1992.

[33] J.A. Vargas Guzmán, A.W. Warrick, and D.E. Myers. Coregionalization by linear com-
bination of nonorthogonal components. Mathematical Geology, 34(4):405–419, 2002.

[34] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learn-
ing. Springer, second edition, 2009.

[35] Jeffrey D. Helterbrand and Noel Cressie. Universal cokriging under intrinsic coregion-
alization. Mathematical Geology, 26(2):205–226, 1994.

[36] Dave Higdon, Jim Gattiker, Brian Williams, and Maria Rightley. Computer model cal-
ibration using high dimensional output. Journal of the American Statistical Association,
103(482):570–583, 2008.

[37] David M. Higdon. A process-convolution approach to modeling temperatures in the
north atlantic ocean. Journal of Ecological and Environmental Statistics, 5:173–190, 1998.

[38] David M. Higdon. Space and space-time modelling using process convolutions. In
C. Anderson, V. Barnett, P. Chatwin, and A. El-Shaarawi, editors, Quantitative methods
for current environmental issues, pages 37–56. Springer-Verlag, 2002.

[39] David M. Higdon, Jenise Swall, and John Kern. Non-stationary spatial modeling. In
J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, editors, Bayesian Statistics
6, pages 761–768. Oxford University Press, 1998.

34

[40] Lars Hörmander. The analysis of Linear Partial Differential Operators I. Springer-Verlag,
Berlin Hiedelberg, first edition, 1983.

[41] L. Jacob, F. Bach, and J.P. Vert. Clustered multi-task learning: A convex formulation. In
Advances in Neural Information Processing Systems (NIPS). Curran Associates, Inc, 2008.

[42] Laurent Jacob, Francis Bach, and Jean-Philippe Vert. Clustered multi-task learning: A
convex formulation. In NIPS 21, pages 745–752, 2008.

[43] Andre G. Journel and Charles J. Huijbregts. Mining Geostatistics. Academic Press, Lon-
don, 1978.

[44] Hideto Kazawa, Tomonori Izumitani, Hirotoshi Taira, and Eisaku Maeda. Maximal
margin labeling for multi-topic text categorization. In Saul et al. [75], pages 649–656.

[45] G. Kimeldorf and G. Wahba. A correspondence between Bayesian estimation of
stochastic processes and smoothing by splines. Ann. Math. Stat., 41:495–502, 1970.

[46] Daphne Koller, Dale Schuurmans, Yoshua Bengio, and Léon Bottou, editors. NIPS,
volume 21, Cambridge, MA, 2009. MIT Press.

[47] H.R. Künsch, A. Papritz, and F. Bassi. Generalized cross-covariances and their estima-
tion. Mathematical Geology, 29(6):779–799, 1997.

[48] R.M. Lark and A. Papritz. Fitting a linear model of coregionalization for soil properties
using simulated annealing. Geoderma, 115:245–260, 2003.

[49] Neil D. Lawrence and John C. Platt. Learning to learn with the informative vector
machine. In Proceedings of the 21st International Conference on Machine Learning (ICML
2004), pages 512–519, 2004.

[50] Neil D. Lawrence, Guido Sanguinetti, and Magnus Rattray. Modelling transcriptional
regulation using Gaussian processes. In Bernhard Schölkopf, John C. Platt, and Thomas
Hofmann, editors, NIPS, volume 19, pages 785–792. MIT Press, Cambridge, MA, 2007.

[51] Neil D. Lawrence, Matthias Seeger, and Ralf Herbrich. Fast sparse Gaussian process
methods: The informative vector machine. In Sue Becker, Sebastian Thrun, and Klaus
Obermayer, editors, NIPS, volume 15, pages 625–632, Cambridge, MA, 2003. MIT Press.

[52] Feng Liang, Kai Mao, Ming Liao, Sayan Mukherjee, and Mike West. Non-parametric
Bayesian kernel models. Department of Statistical Science, Duke University, Discussion
Paper 07-10. (Submitted for publication), 2009.

[53] S. Lowitzsch. A density theorem for matrix-valued radial basis functions. Numerical
Algorithms, 39(1):253–256, 2005.

[54] I. Macêdo and R. Castro. Learning divergence-free and curl-free vector fields with
matrix-valued kernels. Technical report, Instituto Nacional de Matematica Pura e Apli-
cada, 2008.

[55] Anandamayee Majumdar and Alan E. Gelfand. Multivariate spatial modeling for geo-
statistical data using convolved covariance functions. Mathematical Geology, 39(2):225–
244, 2007.

[56] Georges Matheron. The intrinsic random functions and their applications. Advances in
Applied Probability, 5(3):439–468, 1973.

35

[57] C. A. Micchelli and M. Pontil. Kernels for multi-task learning. In Advances in Neural
Information Processing Systems (NIPS). MIT Press, 2004.

[58] C.A. Micchelli and M. Pontil. On learning vector–valued functions. Neural Computation,
17:177–204, 2005.

[59] Thomas P. Minka and Rosalind W. Picard. Learning how to learn is learning with point
sets, 1999. Revised version 1999 available at http://research.microsoft.com/
en-us/um/people/minka/papers/point-sets.html.

[60] Roderick Murray-Smith and Barak A. Pearlmutter. Transformation of Gaussian process
priors. In Joab Winkler, Mahesan Niranjan, and Neil Lawrence, editors, Deterministic
and Statistical Methods in Machine Learning, pages 110–123. LNAI 3635, Springer-Verlag,
2005.

[61] F.J. Narcowich and J.D. Ward. Generalized hermite interpolation via matrix-valued
conditionally positive definite functions. Mathematics of Computation, 63(208):661–687,
1994.

[62] G. Obozinski, B. Taskar, and M.I. Jordan. Joint covariate selection and joint subspace
selection for multiple classification problems. Statistics and Computing, 20(2):231–252,
2010.

[63] Anthony O’Hagan. Bayesian analysis of computer code outputs: A tutorial. Reliability
Engineering and System Safety, 91:1290–1300, 2006.

[64] Michael A. Osborne and Stephen J. Roberts. Gaussian processes for prediction. Tech-
nical report, Department of Engineering Science, University of Oxford, 2007.

[65] Michael A. Osborne, Alex Rogers, Sarvapali D. Ramchurn, Stephen J. Roberts, and
Nicholas R. Jennings. Towards real-time information processing of sensor network
data using computationally efficient multi-output Gaussian processes. In Proceedings
of the International Conference on Information Processing in Sensor Networks (IPSN 2008),
2008.

[66] Christopher J. Paciorek and Mark J. Schervish. Nonstationary covariance functions
for Gaussian process regression. In Sebastian Thrun, Lawrence Saul, and Bernhard
Schölkopf, editors, Advances in Neural Information Processing Systems 16. MIT Press,
Cambridge, MA, 2004.

[67] A. Papritz, H.R. Künsch, and R. Webster. On the pseudo cross-variogram. Mathematical
Geology, 25(8):1015–1026, 1993.

[68] Bernard Pelletier, Pierre Dutilleul, Guillaume Larocque, and James W. Fyles. Fitting the
linear model of coregionalization by generalized least squares. Mathematical Geology,
36(3):323–343, 2004.

[69] Natesh S. Pillai, Qiang Wu, Feng Liang, Sayan Mukherjee, and Robert L. Wolpert. Char-
acterizing the function space for Bayesian kernel models. Journal of Machine Learning
Research, 8:1769–1797, 2007.

[70] Tomaso Poggio and Federico Girosi. Networks for approximation and learning. Pro-
ceedings of the IEEE, 78(9):1481–1497, 1990.

36

[71] Joaquin Quiñonero-Candela and Carl Edward Rasmussen. Analysis of some methods
for reduced rank Gaussian process regression. In R. Murray-Smith and R. Shorten,
editors, Lecture Notes in Computer Science, volume 3355, pages 98–127. Springer, 2005.

[72] Joaquin Quiñonero-Candela and Carl Edward Rasmussen. A unifying view of sparse
approximate Gaussian process regression. Journal of Machine Learning Research, 6:1939–
1959, 2005.

[73] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine
Learning. MIT Press, Cambridge, MA, 2006.

[74] Jonathan Rougier. Efficient emulators for multivariate deterministic functions. Journal
of Computational and Graphical Statistics, 17(4):827–834, 2008.

[75] Lawrence Saul, Yair Weiss, and Léon Bouttou, editors. NIPS, volume 17, Cambridge,
MA, 2005. MIT Press.

[76] Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels: Support Vector Ma-
chines, Regularization, Optimization and Beyond. The MIT Press, USA, 2002.

[77] L. Schwartz. Sous-espaces hilbertiens d’espaces vectoriels topologiques et noyaux as-
sociés (noyaux reproduisants). J. Analyse Math., 13:115–256, 1964.

[78] Matthias Seeger and Michael I. Jordan. Sparse Gaussian Process Classification With
Multiple Classes. Technical Report 661, Department of Statistics, University of Califor-
nia at Berkeley, 2004.

[79] John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis. Cam-
bridge University Press, New York, NY, USA, 2004.

[80] D. Sheldon. Graphical multi-task learning. Technical report, Cornell University, 2008.
Preprint.

[81] Jian Qing Shi, Roderick Murray-Smith, D.M. Titterington, and Barak Pearlmutter.
Learning with large data sets using filtered Gaussian process priors. In R. Murray-
Smith and R. Shorten, editors, Proceedings of the Hamilton Summer School on Switching
and Learning in Feedback systems, pages 128–139. LNCS 3355, Springer-Verlag, 2005.

[82] Michael L. Stein. Interpolation of Spatial Data. Springer-Verlag New York, Inc., first
edition, 1999.

[83] Yee Whye Teh, Matthias Seeger, and Michael I. Jordan. Semiparametric latent factor
models. In Robert G. Cowell and Zoubin Ghahramani, editors, AISTATS 10, pages
333–340, Barbados, 6-8 January 2005. Society for Artificial Intelligence and Statistics.

[84] Sebastian Thrun. Is learning the n-thing any easier than learning the first? In David S.
Touretzky, Michael C. Mozer, and Michael E. Hasselmo, editors, NIPS, volume 08,
pages 640–646. MIT Press, Cambridge, MA, 1996.

[85] Michalis Titsias, Neil D Lawrence, and Magnus Rattray. Efficient sampling for Gaussian
process inference using control variables. In Koller et al. [46], pages 1681–1688.

[86] V. N. Vapnik. Statistical learning theory. Adaptive and Learning Systems for Signal
Processing, Communications, and Control. John Wiley & Sons Inc., New York, 1998. A
Wiley-Interscience Publication.

37

[87] Jay M. Ver Hoef and Ronald Paul Barry. Constructing and fitting models for cokriging
and multivariable spatial prediction. Journal of Statistical Plannig and Inference, 69:275–
294, 1998.

[88] Jay M. Ver Hoef, Noel Cressie, and Ronald Paul Barry. Flexible spatial models for
kriging and cokriging using moving averages and the Fast Fourier Transform (FFT).
Journal of Computational and Graphical Statistics, 13(2):265–282, 2004.

[89] Hans Wackernagel. Multivariate Geostatistics. Springer-Verlag Heidelberg New york,
2003.

[90] Grace Wahba. Spline Models for Observational Data. SIAM, first edition, 1990.

[91] Jack M. Wang, David J. Fleet, and Aaron Hertzmann. Gaussian process dynamical
models for human motion. IEEE Transactions on Pattern Analysis and Machine Intelligence,
30(2):283–298, 2008.

[92] Christopher K. Wikle. A kernel-based spectral model for non-Gaussian spatio-temporal
processes. Statistical Modelling, 2:299–314, 2002.

[93] Christopher K. Wikle. Hierarchical Bayesian models for predicting the spread of eco-
logical processes. Ecology, 84(6):1382–1394, 2003.

[94] Christopher K. Wikle, L. Mark Berliner, and Noel Cressie. Hierarchical Bayesian space-
time models. Environmental and Ecological Statistics, 5:117–154, 1998.

[95] Christopher K.I. Williams and David Barber. Bayesian Classification with Gaussian
processes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(12):1342–
1351, 1998.

[96] Ian Woodward, Mark R. Lomas, and Richard A. Betts. Vegetation-climate feedbacks in
a greenhouse world. Philosophical Transactions: Biological Sciences, 353(1365):29–39, 1998.

[97] Ya Xue, Xuejun Liao, and Lawrence Carin. Multi-task learning for classification with
Dirichlet process priors. Journal of Machine Learning Research, 8:35–63, 2007.

[98] Kai Yu, Volker Tresp, and Anton Schwaighofer. Learning Gaussian processes from
multiple tasks. In Proceedings of the 22nd International Conference on Machine Learning
(ICML 2005), pages 1012–1019, 2005.

[99] Hao Zhang. Maximum-likelihood estimation for multivariate spatial linear coregion-
alization models. Environmetrics, 18:125–139, 2007.

38

