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Abstract

In this work we are interested in the problems of supervised learning and variable selection when the
input-output dependence is described by a nonlinear function depending on a few variables. Our goal is to
consider a sparse nonparametric model, hence avoiding linear or additive models. The key idea is to measure
the importance of each variable in the model by making use of partial derivatives. Based on this intuition
we propose and study a new regularizer and a corresponding least squares regularization scheme. Using
concepts and results from the theory of reproducing kernel Hilbert spaces and proximal methods, we show
that the proposed learning algorithm corresponds to a minimization problem which can be provably solved
by an iterative procedure. The consistency properties of the obtained estimator are studied both in terms
of prediction and selection performance. An extensive empirical analysis shows that the proposed method
performs favorably with respect to the state-of-the-art.

1 Introduction

It is now common to see practical applications, for example in bioinformatics and computer vision, where the
dimensionality of the data is in the order of hundreds, thousands and even tens of thousands. Learning in
such a high dimensional regime is feasible only if the quantity to be estimated satisfies some regularity as-
sumptions. In particular, the idea behind, so called, sparsity is that the quantity of interest depends only on a
few relevant variables (dimensions). In turn, this latter assumption is often at the basis of the construction of
interpretable data models, since the relevant dimensions allow for a compact, hence interpretable, representa-
tion. An instance of the above situation is the problem of learning from samples a multivariate function which
depends only on a (possibly small) subset of the variables, the relevant variables. Detecting such variables is
the problem of variable selection.

Largely motivated by recent advances in compressed sensing and related results, the above problem has
been extensively studied under the assumption that the function of interest (target function) depends linearly
to the relevant variables. While a naive approach (trying all possible subsets of variables) would not be compu-
tationally feasible it is known that meaningful approximations can be found either by greedy methods (Tropp
and Gilbert, 2007), or convex relaxation (`1 regularization a.k.a. basis pursuit or LASSO (Tibshirani, 1996; Chen
et al., 1999; Efron et al., 2004)). In this context efficient algorithms ( see Schmidt et al. (2007); Loris (2009) and
references therein) as well as theoretical guarantees are now available (see Bühlmann and van de Geer (2011)
and references therein). In this paper we are interested into the situation where the target function depends
non-linearly to the relevant variables. This latter situation is much less understood. Approaches in the literature
are mostly restricted to additive models (Hastie and Tibshirani, 1990). In such models the target function is
assumed to be a sum of (non-linear) univariate functions. Solutions to the problem of variable selection in this
class of models include Ravikumar et al. (2008) and are related to multiple kernel learning (Bach et al., 2004).
Higher order additive models can be further considered, encoding explicitly dependence among the variables
– for example assuming the target function to be also sum of functions depending on couples, triplets etc. of
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variables, as in Lin and Zhang (2006) and Bach (2009). Though this approach provides a more interesting,
while still interpretable, model, its size/complexity is essentially more than exponential in the initial variables.
Among the few papers considering the problem is worth mentioning Lafferty and Wasserman (2008) which
proposes a non-parametric estimator (called RODEO).

In this paper we propose a different approach that builds on the idea that the importance of a variable, while
learning a non-linear functional relation, can be captured by partial derivatives. This observation suggests to
design a regularizer which favors functions where most partial derivatives are essentially zero. A question
is how to make this last requirement precise and computational feasible. The first observation is that, while
we cannot measure a partial derivative everywhere, we can do it at the training set points and hence design
a data-dependent regularizer. In order to derive an actual algorithm we have to consider two further issues:
How can we estimate reliably partial derivatives in high dimensions? How can we ensure that the data-driven
penalty is sufficiently stable? The theory of reproducing kernel Hilbert spaces (RKHSs) provide us with tools
to answer both questions. In fact, partial derivatives in a RKHS are bounded linear functionals and hence
have a suitable representation allowing for efficient computations. Moreover the norm in the RKHS provides
a natural further regularizer ensuring stable behavior of the empirical, derivative based penalty. Our analysis
is split into 3 main parts. First we discuss the minimization of the functional defining the algorithm. If we
consider the square loss function, the obtained functional is convex but not differentiable. Given the form
of the functional, we suggest that proximal methods can be a suitable technique to design a computational
solution. The algorithm we derive is an iterative procedure requiring a projection at each step. While such
a projection cannot be computed in closed form it can be efficiently computed in an iterative fashion. We
prove both in theory and practice that the obtained procedures converge with fast rates. Second, we study
the prediction and selection properties of the obtained estimator. Third, we validate the empirical properties
of the proposed algorithm on both toy and benchmark datasets. Our method performs favorably and often
outperforms other methods.

Some of the results we present have appeared in a shorter conference version of the paper (Rosasco et al.,
2010). With respect to the conference version, the current version contains: the detailed discussion of the
derivation of the algorithm with all the proofs, the consistency results of Section 4, an augmented set of experi-
ments and several further discussions. The paper is organized as follows. In section 2 we discuss our approach
and present the main results in the paper. In Section 3 we discuss the computational aspects of the method.
In Section 4 we prove consistency results. In Section 5 we provide an extensive empirical analysis. Finally in
Section 6 we conclude with a summary of our study and a discussion of future work.

2 Sparsity Beyond linear Models: Nonparametric and Regularization

Given a training set zn = (x,y) = (xi, yi)ni=1 of input output pairs, with xi ∈ X ⊆ Rd and yi ∈ Y ⊆ R, we are
interested into learning about the functional relationship between input and output.

More precisely, in statistical learning the data are assumed to be sampled identically and independently
from a probability measure ρ onX×Y so that if we measure the error by the square loss function, the regression
function fρ(x) =

∫
ydρ(x, y) minimizes the expected risk E(f) =

∫
(y − f(x))2dρ(x, y).

Finding an estimator f̂ of fρ from finite data is possible, if fρ is sufficiently regular (Devroye et al., 1996). In
this paper we are interested in the case where the regression function is sparse in the sense that it depends only
on a subset Rρ of the possible d variables. Finding such relevant variables is the problem of variable selection.

2.1 Linear and Additive Models

The above discussion can be made precise considering linear functions f(x) =
∑d
a=1 βax

a with x = (x1, . . . , xd).
In this case the sparsity of a function is quantified by the so called zero-norm Ω0(f) = #{a = 1, . . . , d | βa 6= 0}.
The zero norm, while natural for variable selection, does not lead to efficient algorithms and is often replaced
by the `1 norm, that is Ω1(f) =

∑d
a=1 |βa|. This situation is fairly well understood, see (Bühlmann and van de

Geer, 2011) and references therein. Regularization with `1 regularizers, obtained by minimizing

Ê(f) + λΩ1(f), Ê(f) =
1
n

n∑
i=1

(yi − f(xi))2,

can be solved efficiently and, under suitable conditions, provides a solution close to that of a zero-norm regu-
larization.
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The above scenario can be generalized to additive models f(x) =
∑d
a=1 fa(xa), where fa are univariate

functions in some (reproducing kernel) Hilbert space Ha, a = 1, . . . , d. In this case the analogous of the zero-
norm and the `1 norm are Ω0(f) = #{a = 1, . . . , d : ‖fa‖ 6= 0} and Ω1(f) =

∑d
a=1 ‖fa‖, respectively. This

latter setting, related to multiple kernel learning (Bach et al., 2004; Bach, 2008), has been considered for example
in Ravikumar et al. (2008), see also Koltchinskii and Yuan (2010) and references therein. The simple additive
model limits the way the variables interact. This can be partially alleviated considering higher order terms in
the model as it is done in ANOVA decomposition (Wahba et al., 1995; Gu, 2002). More precisely, we can add to
the simple additive model functions of couples fa,b(xa, xb), triplets fa,b,c(xa, xb, xc), etc. of variables – see Lin
and Zhang (2006). For example one can consider functions of the form f(x) =

∑d
a=1 fa(xa)+

∑
a<b fa,b(x

a, xb).
In this case the analogous to the zero and `1 norms are Ω0(f) = #{a = 1, . . . , d : ‖fa‖ 6= 0}+ #{(a, b) : a <
b, ‖fb,c‖ 6= 0} and Ω1(f) =

∑d
a=1 ‖fa‖ +

∑
a<b ‖fa,b‖, respectively. Note that in this case sparsity will not be

in general with respect to the original variables but rather with respect to the elements in the additive model.
Clearly, while this approach provides a more interesting and yet interpretable model, its size/complexity is
essentially more than exponential in the initial variables. Some proposed attempts to tackle this problem are
based on restricting the set of allowed sparsity patterns and can be found in Bach (2009).

The above discussion raises the following question.
What if we are interested into learning and variable selection when the functions of interest are not described by an
additive model?

To the best of our knowledge the only attempt to tackle this question is the one in Lafferty and Wasserman
(2008) and is based on local estimators. Similarly, Bertin and Lecué (2008) consider a local polynomial estima-
tor. For a fixed point x, f(x) is modeled as the Taylor polynomial of order 1 at x. The cost functional is thus the
empirical risk regularized with the `1 norm of the Taylor coefficients (scaled w.r.t. a fixed bandwidth), so that
sparsity here is over the Taylor expansion. In a different setting, the problem has been considered in DeVore
et al. (2011). Recently Comminges and Dalalyan (2011) derived theoretical results on consistent estimation of
the sparsity pattern in a nonparametric context, though the proposed learning procedure does not seem to be
practical.

2.2 Sparsity and Regularization using Partial Derivatives

Our study starts from the observation that, if a function f is differentiable, the relative importance of a variable
at a point x can be captured by the magnitude of the corresponding partial derivative1∣∣∣∣ ∂f∂xa

∣∣∣∣ .
In the rest of the paper we discuss how we can use this observation to define a new notion of sparsity for non
linear models and design a regularized algorithm. Regularization using derivatives is not new. The classical
splines (Sobolev spaces) regularization (Wahba, 1990), as well as more modern techniques such as manifold
regularization (Belkin and Niyogi, 2008) use derivatives to measure the regularity of a function. Similarly total
variation regularization utilizes derivatives to define regular function. None of the above methods though
allows to capture a notion of sparsity suitable both for learning and variable selection– see Remark 1.

Using partial derivatives to define a new notion of a sparsity and design a regularizer for learning and
variable selection requires considering the following two issues. First, we need to quantify the relevance of a
variable beyond a single input point. If the partial derivative is continuous 2 then a natural idea is to consider∥∥∥∥ ∂f∂xa

∥∥∥∥
ρX

=

√∫
X

(
∂f(x)
∂xa

)2

dρX (x). (1)

where ρX is the marginal probability measure of ρ on X . While considering other Lp norms is possible, in this
paper we restrict our attention to L2. A notion of sparsity for a differentiable, non-linear function f is captured
by the following functional

ΩD
0 (f) = #

{
a = 1, . . . , d :

∥∥∥∥ ∂f∂xa
∥∥∥∥
ρX

6= 0

}
, (2)

1In order for the partial derivatives to be defined at all points we always assume that the closure of X coincides with the closure of its
interior.

2In the following, see SEction REF, we will see that further appropriate regularity properties on f are needed depending on whether
the support of ρX is connected or not.
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Figure 1: Difference between `1/`1 and `1/`2 norm for binary matrices (white = 1, black=0), where in the latter
case the `1 norm is taken over the rows (variables) and the `2 norm over the columns (samples). The two
matrices have the same number of nonzero entries, and thus the same `1/`1 norm, but the value of the `1/`2

norm is smaller for the matrix on the right, where the nonzero entries are positioned to fill a subset of the rows.
The situation on the right is thus favored by `1/`2 regularization.

and the corresponding relaxation is

ΩD
1 (f) =

d∑
a=1

∥∥∥∥ ∂f∂xa
∥∥∥∥
ρX

.

The second issue comes from the fact ρX is only known through the training set. To obtain a practical algorithm
we start by replacing the L2 norm with an empirical version

∥∥∥∥ ∂f∂xa
∥∥∥∥
n

=

√√√√ 1
n

n∑
i=1

(
∂f(xi)
∂xa

)2

and by replacing (1) by the data-driven regularizer,

Ω̂D1 (f) =
d∑
a=1

∥∥∥∥ ∂f∂xa
∥∥∥∥
n

. (3)

While the above quantity is a natural estimate of (1) in practice it might not be sufficiently stable to ensure
good function estimates where data are poorly sampled. In the same spirit of manifold regularization (Belkin
and Niyogi, 2008), we then propose to further consider functions in a reproducing kernel Hilbert space (RKHS)
defined by a differentiable kernel and use the penalty

Ω̂D1 (f) + ν‖f‖2H
where ν is a small positive number. The latter terms ensures stability while making the regularizer strongly
convex. This latter property is a key for well-posedeness and generalization as we discuss in Section 4. As we
will see in the following, RKHS will also be a key tool allowing computations of partial derivative of potentially
high dimensional functions.

The final learning algorithm is given by the minimization of the functional

1
n

n∑
i=1

(yi − f(xi))2 + τ

(
d∑
a=1

∥∥∥∥ ∂f∂xa
∥∥∥∥
n

+ ν‖f‖2H
)
. (4)

The remainder of the paper is devoted to the analysis of the above regularization algorithm. Before summa-
rizing our main results we add two remarks.

Remark 1 (Importance of the square root). It is perhaps useful to remark the importance for sparsity of the square
root in the definition of the derivative based regularizer. We start by considering

d∑
a=1

∥∥∥∥ ∂f∂xa
∥∥∥∥2

n

=
1
n

n∑
i=1

d∑
a=1

(
∂f(xi)
∂xa

)2

=
1
n

n∑
i=1

‖∇f(xi)‖2,

where ∇f(x) is the gradient of f at x. This is essentially a data-dependent version of the classical penalty in Sobolev
spaces which writes

∫ ‖∇f(x)‖2dx, where the uniform (Lebesgue) measure is considered. It is well known that while this
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regularizer measure the smoothness it does not yield any sparsity property. Then we could consider

1
n

n∑
i=1

d∑
a=1

∣∣∣∣∂f(xi)
∂xa

∣∣∣∣ .
Though this penalty (which we call `1/`1) favors sparsity, it only forces partial derivative at points to be zero. In com-
parison the regularizer we propose is of the `1/`2 type and utilizes the square root to “group” the values of each partial
derivative at different points hence favoring functions for which each partial derivative is small at most points. The
difference between penalties is illustrated in Figure 1. Finally note that we can also consider 1

n

∑n
i=1 ‖∇f(xi)‖. This

regularizer, which is akin to the total variation regularizer
∫ ‖∇f(x)‖dx, groups the partial derivatives differently and

favors functions with localized singularities rather than selecting variables.

Remark 2. As it is clear from the previous discussion, we quantify the importance of a variable based on the norm of the
corresponding partial derivative. This approach makes sense only if

‖Daf‖ρX = 0 ⇒ f is constant with respect to xa. (5)

The previous fact holds trivially if we assume the function f to be continuously differentiable (so that the derivative is
pointwise defined, and is a continuous function) and suppρX to be connected. If the latter assumption is not satisfied
the situation is more complicated, as the following example shows. Suppose that ρX is the uniform distribution on the
disjoint intervals [−2,−1] and [1, 2], and Y = {−1, 1}. Moreover assume that ρ(y|x) = δ−1, if x ∈ [−2,−1] and
ρ(y|x) = δ1, if x ∈ [1, 2]. Then, if we consider the regression function

f(x) =

{
−1 if x ∈ [−2,−1]
1 if x ∈ [1, 2]

we get that f ′(x) = 0 on the support of ρX , although the variable x is relevant. To avoid such pathological situations
when suppρX is not connected in Rd we need to impose more stringent regularity assumptions that basically imply that
a function which is constant on a open interval is constant everywhere. This is verified when f belongs to the RKHS
defined by a polynomial kernel, or, more generally, an analytic kernel such as the Gaussian kernel.

2.3 Main Results

We summarize our main contributions.

1. We extend the representer theorem (Wahba, 1990) and show that the minimizer of (4) has the finite di-
mensional representation

f̂τ (x) =
n∑
i=1

1
n
αik(xi, x) +

n∑
i=1

d∑
a=1

1
n
βai

∂k(s, x)
∂sa

∣∣∣∣
s=xi

,

with α, (βai)ni=1 ∈ Rn for all a = 1, . . . , d.

Then we show that the coefficients in the expansion can be computed using proximal methods (Com-
bettes and Wajs, 2005; Beck and Teboulle, 2009). More precisely, we present a fast forward-backward
splitting algorithm, where the proximity operator does not admit a closed form and is thus computed
in an approximated way. Using recent results for proximal methods with approximate proximity op-
erators, we are able to prove convergence with rate for the overall procedure. The resulting algorithm
requires only matrix multiplications and thresholding operations and is in terms of the coefficients α and
β and matrices given by the kernel and its first and second derivatives evaluated at the training set points.

2. We study the consistency properties of the obtained estimator. We prove that, if the kernel we use is
universal, then there exists a choice of τ = τn depending on n such that the algorithm is universally
consistent (Steinwart and Christmann, 2008), that is

lim
n→∞P

(
E(f̂τn)− E(fρ) > ε

)
= 0
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Figure 2: Comparison of predictions for a radial function of 2 out of 20 variables (the 18 irrelevant variables are
not shown in the figure). In the upper left plot is depicted the value of the function on the test points (left), the
noisy training points (center), the values predicted for the test points by our method (DENOVAS) (right). The
bottom plots represent the values predicted for the test points by state-of-the-art algorithms based on additive
models. Left: Multiple kernel learning based on additive models using kernels. Center: COSSO, which is
a higher order additive model based on ANOVA decomposition (Lin and Zhang, 2006). Right: Hierarchical
kernel learning (Bach, 2009).

for all ε > 0. Moreover, we study the selection properties of the algorithm and prove that, if Rρ is the set
of relevant variables and R̂τn the set estimated by our algorithm, then the following consistency result
holds

lim
n→∞P

(
R̂τn ⊆ Rρ

)
= 1.

3. Finally we provide an extensive empirical analysis both on simulated and benchmark data, showing that
the proposed algorithm (DENOVAS) compares favorably and often outperforms other algorithms. This
is particularly evident when the function to be estimated is highly non linear. The proposed method can
take advantage of working in a rich, possibly infinite dimensional, hypotheses space given by a RKHS,
to obtain better estimation and selection properties. This is illustrated in Figure 2, where the regression
function is a nonlinear function of 2 of 20 possible input variables. With 100 training samples the algo-
rithms we propose is the only one able to correctly solve the problem among different linear and non
linear additive models. On real data our method outperforms other methods on several data sets. In
most cases, the performance of our method and regularized least squares (RLS) are similar. However
our method brings higher interpretability since it is able to select a smaller subset of relevant variable,
while the estimator provided by RLS depends on all variables.

We start our analysis discussing how to compute efficiently a regularized solution.

3 Computing the regularized solution

In this section we study the minimization of the functional (4). We let

Êτ (f) :=
1
n

n∑
i=1

(yi − f(xi))2 + τ
(

2Ω̂D1 (f) + ν‖f‖2H
)
. (6)

where Ω̂D1 (f) is defined in (3). We start observing that the term ‖f‖2H makes the above functional coercive and
strongly convex with modulus3 τν/2, so that standard results (Ekeland and Temam (1976)) ensures existence

3We say that a function E : H → R ∪ {+∞} is:
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and uniqueness of a minimizer f̂τ , for any ν > 0.
The rest of this section is divided into two parts. First we show how the theory of RKHS (Aronszajn, 1950)

allows to compute derivatives of functions on high dimensional spaces and also to derive a new representer
theorem that allows to deal with finite dimensional minimization problems. Second we discuss how to apply
proximal methods Combettes and Wajs (2005); Beck and Teboulle (2009) to derive an iterative optimization
procedure of which we can prove convergence. The main outcome of our analysis is that the solution of
Problem (6) can be written as

f̂τ (x) =
n∑
i=1

1
n
αikxi(x) +

n∑
i=1

d∑
a=1

1
n
βa,i(∂ak)xi(x), (7)

where α, (βa,i)ni=1 ∈ Rn for all a = 1, . . . , d and (∂ak)x denotes partial derivatives of the kernel, see (19). The
coefficients α and β can be computed through an iterative procedure. To describe the algorithm we need some
notation. For all a, b = 1, . . . , d, we define the n× n matrices K,Za,La,b as

Ki,j =
1
n
k(xi, xj), (8)

[Za]i,j =
1
n

∂k(s, xj)
∂sa

∣∣∣∣
s=xi

, (9)

and

[La,b]i,j =
1
n

∂2k(x, s)
∂xa∂sb

∣∣∣∣
x=xi,s=xj

for all i, j = 1, . . . , n. Clearly the above quantities can be easily computed as soon as we have an explicit
expression of the kernel see Example 1 in Appendix A. We introduce also the n× nd matrices

Z = (Z1, . . . ,Zd)

La = (La,1, . . . ,La,d) ∀a = 1, . . . , d (10)

and the nd× nd matrix

L =

 L1,1 . . . L1,d

. . . . . . . . .
Ld,1 . . . Ld,d

 =

 La
. . .
Ld


Denote with Bn the unitary ball in Rn

Bn = {v ∈ Rn |‖v‖n ≤ 1}. (11)

The coefficients in (7) are obtained through Algorithm 1, where β is considered as the nd column vector β =
(β1,1, . . . , β1,n, . . . , βd,1, . . . , βd,n)T .

The proposed optimization algorithm consists of two nested iterations, and involves only matrix multipli-
cations and thresholding operations. Before describing its derivation and discussing its convergence proper-
ties, we add several remarks. First, the proposed procedure requires the choice of an appropriate stopping
rule, which will be discussed later, and of the step sizes σ and η. The simple a priori choice σ = ‖K‖ + τν,
η = ‖L‖ ensures convergence, as discussed in the Subsection 3.3, and is the one used in our experiments.
Second, the computation of the solution for different regularization parameters can be highly accelerated by a
simple warm starting procedure, as the one in Hale et al. (2008). Finally, a critical issue is the identification the
variables selected by the algorithm. in Subsection 3.4 we discuss a principled way to select variable using on
the norm of the coefficients (v̄ta)da=1.

• coercive if lim‖f‖→+∞ E(f)/‖f‖ = +∞;

• strongly convex of modulus µ if E(tf + (1− t)g) ≤ tE(f) + (1− t)E(g)− µ
2
t(1− t)‖f − g‖2 for all t ∈ [0, 1].

7



Algorithm 1
Given: parameters τ, ν > 0 and step-sizes σ, η > 0
Initialize: α0 = α̃1 = 0, β0 = β̃1 = 0, s1 = 1, v̄0 = 0, t = 1
while convergence not reached do
t = t+ 1

st =
1
2

(
1 +

√
1 + 4s2

t−1

)
(12)

α̃t =
(

1 +
st−1 − 1

st

)
αt−1 +

1− st−1

st
αt−2, β̃t =

(
1 +

st−1 − 1
st

)
βt−1 +

1− st−1

st
βt−2, (13)

αt =
(

1− τν

σ

)
α̃t − 1

σ

(
Kα̃t + Zβ̃t − y

)
(14)

set v0 = v̄t−1, q = 0
while convergence not reached do
q = q + 1
for a = 1, . . . d do

vqa = π τ
σBn

(
vq−1
a − 1

η

(
Lavq−1 −

(
ZTa α

t +
(

1− τν

σ

)
Laβ̃t

)))
(15)

end for
end while
set v̄t = vq

βt =
(

1− τν

σ

)
β̃t − v̄t. (16)

end while
return (αt, βt)

3.1 Kernels, Partial Derivatives and Regularization

We start discussing how (partial) derivatives can be efficiently computed in RKHSs induced by smooth kernels
and hence derive a new representer theorem. Practical computation of the derivatives for a differentiable
functions is often performed via finite differences. For functions defined on a high dimensional space such
a procedure becomes cumbersome and ultimately not-efficient. RKHSs provide an alternative computational
tool.

Recall that the RKHS associated to a symmetric positive definite function k : X × X → R is the unique
Hilbert space (H, 〈·, ·〉H) such that kx = k(x, ·) ∈ H, for all x ∈ X and

f(x) = 〈f, kx〉H, (17)

for all f ∈ H, x ∈ X . Property (17) is called reproducing property and k is called reproducing kernel (Aronszajn,
1950). We recall a few basic facts. The functions in H can be written as pointwise limits of finite linear com-
binations of the type

∑p
i=1 αikxi , where αi ∈ R, xi ∈ X for all i. One of the most important results for kernel

methods, namely the representer theorem (Wahba, 1990), shows that a large class of regularized kernel meth-
ods induce estimators that can be written as finite linear combinations of kernels centered at the training set
points. This result allows to consider potentially infinite dimensional spaces. In the following we will make
use of the so called sampling operator, which returns the values of a function f ∈ H at a set of input points
x = (x1, . . . , xn)

Ŝ : H → Rn, (Ŝf)i = 〈f, kxi〉, i = 1, . . . , n. (18)

The above operator is linear and bounded if the kernel is bounded– see Appendix A, so in the following we
always make the following assumption.

Assumption (A1). There exists κ1 <∞ such that supx∈X ‖kx‖H < κ1.

Next we discuss how the theory of RKHS allows efficient derivative computations. Let

(∂ak)x :=
∂k(s, ·)
∂sa

∣∣∣∣
s=x

(19)
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be the partial derivative of the kernel with respect to the first variable. Then, from Theorem 1 in Zhou (2008)
we have that, if k is at least a C2(X × X ), (∂ak)x belongs toH for all x ∈ X and most importantly

∂f(x)
∂xa

= 〈f, (∂ak)x〉H,

for a = 1, . . . , d, x ∈ X . It is useful to define the analogous of the sampling operator for derivatives, which
returns the values of the partial derivative of a function f ∈ H at a set of input points x = (x1, . . . , xn),

D̂a : H → Rn, (D̂af)i = 〈f, (∂ak)xi〉, (20)

where a = 1, . . . , d, i = 1, . . . , n. It is also useful to define an empirical gradient operator ∇̂ : H → (Rn)d defined
by ∇̂f = (D̂af)da=1. The above operators are linear and bounded, if the following assumption is satisfied.

Assumption (A2). The kernel k is C2(X × X ) and there exists κ2 < ∞ such that supx∈X ‖(∂ak)x‖H < κ2, for all
a = 1, . . . , d.

We refer to Appendix A for further details and supplementary results.
Provided with the above results we can prove a suitable generalization of the representer theorem.

Proposition 1. The minimizer of (6) can be written as

f̂τ =
n∑
i=1

1
n
αikxi +

n∑
i=1

d∑
a=1

1
n
βa,i(∂ak)xi (21)

with α ∈ R and β ∈ Rnd.

The above result is proved in Appendix A and shows that the regularized solution is determined by the set of
n+ nd coefficients α ∈ Rn and β ∈ Rnd. We next discuss how such coefficients can be efficiently computed.

Notation. In the following, given an operator A we denote by A∗ the corresponding adjoint operator. When A
is a matrix we use the standard notation for the transpose AT = A∗.

3.2 Computing the Solution with Proximal Methods

The functional Êτ is not differentiable, hence its minimization cannot be done by simple gradient methods.
Nonetheless it has a special structure that allows efficient computations using a forward-backward splitting
algorithm (Combettes and Wajs, 2005), belonging to the class of the so called proximal methods.

Second order methods, see for example Chan et al. (1999), could also be used to solve similar problems.
These methods typically converge quadratically and allows accurate computations. However, they usually
have a high cost per iteration and hence are not suitable for large scale problems, as opposed to first order
methods having much lower cost per iteration. Furthermore, in the seminal paper Nesterov (1983) first-order
methods with optimal convergence rate are proposed (Nemirovski and Yudin, 1983). First order methods have
since become a popular tool to solve non-smooth problems in machine learning as well as signal and image
processing, see for example FISTA – Beck and Teboulle (2009) and references therein. These methods have
proved to be fast and accurate (Becker et al., 2011), both for `1-based regularization – see Combettes and Wajs
(2005), Daubechies et al. (2007), Figueiredo et al. (2007), Loris et al. (2009) – and more general regularized learn-
ing methods – see for example Duchi and Singer (2009), Mosci et al. (2010), Jenatton et al. (2010) –.

Forward-backward splitting algorithms The functional Êτ is the sum of the two terms F (·) = Ê(·) + τν‖·‖2H
and 2τ Ω̂D1 . The first term is strongly convex of modulus τν and differentiable, while the second term is convex
but not differentiable. The minimization of this class of functionals can be done iteratively using the forward-
backward (FB) splitting algorithm,

f t = prox τ
σ Ω̂D1

(
f̃ t − 1

2σ
∇F (f̃ t)

)
(22)

f̃ t = c1,tf
t−1 + c2,tf

t−2 (23)
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where f0 = f1 ∈ H is an arbitrary initialization, c1,t, c2,t are suitably chosen positive sequences, and prox τ
σ Ω̂D1

:
H → H is the proximity operator (Moreau, 1965) defined by,

prox τ
σ Ω̂D1

(f) = argmin
g∈H

(
τ

σ
Ω̂D1 (g) +

1
2
‖f − g‖2

)
.

The above approach decouples the contribution of the differentiable and not differentiable terms. Unlike other
simpler penalties used in additive models, such as the `1 norm in the lasso, the computation of the proxim-
ity operator of Ω̂D1 is not trivial and will be discussed in the next paragraph. Here we briefly recall the main
properties of the iteration (22), (23) depending on the choice of c1,t, c2,t and σ. The basic version of the algo-
rithm (Combettes and Wajs, 2005), sometimes called ISTA (iterative shrinkage thresholding algorithm (Beck
and Teboulle, 2009)), is obtained setting c1,t = 1 and c2,t = 0 for all t > 0, so that each step depends only on
the previous iterate. The convergence of the algorithm for both the objective function values and the minimiz-
ers is extensively studied in Combettes and Wajs (2005), but a convergence rate is not provided. In Beck and
Teboulle (2009) it is shown that the convergence of the objective function values is of order O(1/t) provided
that the step size σ satisfies σ ≥ L, where L is the Lipschitz constant of ∇F/2. An alternative choice of c1,t
and c2,t leads to an accelerated version of the algorithm (22), sometimes called FISTA (fast iterative shrinkage
thresholding algorithm (Tseng, 2010; Beck and Teboulle, 2009)), which is obtained by setting s0 = 1,

st =
1
2

(
1 +

√
1 + 4s2

t−1

)
, c1,t = 1 +

st−1 − 1
st

, and c2,t =
1− st−1

st
. (24)

The algorithm is analyzed in (Beck and Teboulle, 2009) and in (Tseng, 2010) where it is proved that the objective
values generated by such a procedure have convergence of order O(1/t2), if the step size satisfies σ ≥ L.

Computing L can be non trivial. Theorems 3.1 and 4.4 in Beck and Teboulle (2009) show that the iterative
procedure (22) with an adaptive choice for the step size, called backtracking, which does not require the compu-
tation of L, shares the same rate of convergence of the corresponding procedure with fixed step-size. Finally, it
is well known that, if the functional is strongly convex with a positive modulus, the convergence rate of both
the basic and accelerated scheme is indeed linear for both the function values and the minimizers (Nesterov,
1983; Mosci et al., 2010; Nesterov, 2007).

In our setting we use FISTA to tackle the minimization of Êτ but, as we mentioned before, we have to deal
with the computation of the proximity operator associated to Ω̂D1 .

Computing the proximity operator. Since Ω̂D1 is one-homogeneus, i.e. Ω̂D1 (λf) = λΩ̂D1 (f) for λ > 0, the
Moreau identity, see (Combettes and Wajs, 2005), gives a useful alternative formulation for the proximity
operator, that is

prox τ
σ Ω̂D1

= I − π τ
σ Cn , (25)

where Cn = (∂Ω̂D1 )(0) is the subdifferential 4 of Ω̂D1 at the origin, and π τ
σ Cn : H → H is the projection on τ

σCn–
which is well defined since Cn is a closed convex subset of H. To describe how to practically compute such
a projection, we start observing that the DENOVAS penalty Ω̂D1 is the sum of d norms in Rn. Then following
Section 3.2 in Mosci et al. (2010) (see also Ekeland and Temam (1976)) we have

Cn = ∂Ω̂D1 (0) =
{
f ∈ H | f = ∇̂∗v with v ∈ Bdn

}
,

where Bdn is the cartesian product of d unitary balls in Rn,

Bdn = Bn × · · · ×Bn︸ ︷︷ ︸
d times

= {v = (v1, . . . , vd) |va ∈ Rn, ‖va‖n ≤ 1, a = 1, . . . , d},

4Recall that the subdifferential of a convex functional Ω : H → R ∪ {+∞} is denoted with ∂Ω(f) and is defined as the set

∂Ω(f) := {h ∈ H : Ω(g)− Ω(f) ≥ 〈h, g − f〉H, ∀g ∈ H}.
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with Bn defined in (11). Then, by definition, the projection is given by

π τ
σ Cn(f) = ∇̂∗v̄,

where
v̄ ∈ argmin

v∈ τσBdn
‖f − ∇̂∗v‖2H. (26)

Being a convex constrained problem, (26) can be seen as the sum of the smooth term ‖f − ∇̂∗v‖2H and the
indicator function of the convex set Bdn. We can therefore use (22), again. In fact we can fix an arbitrary
initialization v0 ∈ Rnd and consider,

vq+1 = π τ
σB

d
n

(
vq − 1

η
∇̂(∇̂∗vq − f)

)
, (27)

for a suitable choice of η. In particular, we notice that π τ
σB

d
n

can be easily computed in closed form, and corre-
sponds to the proximity operator associated to the indicator function of Bdn. Applying the results mentioned
above, if η ≥ ‖∇̂∇̂∗‖, convergence of the function values of problem (26) on the sequence generated via (27) is
guaranteed. However, since we are interested in the computation of the proximity operator, this is not enough.
Thanks to the special structure of the minimization problem in (26), it is possible to prove (see (Combettes et al.,
2010; Mosci et al., 2010)) that

‖∇̂∗vq − ∇̂∗v̄‖H → 0, or, equivalently ‖∇̂∗vq − π τ
σ Cn(f)‖H → 0. (28)

A similar first-order method to compute convergent approximations of ∇̂∗v̄ has been proposed in (Bect
et al., 2004).

3.3 Overall Procedure and Convergence analysis

To compute the minimizer of Êτ we consider the combination of the accelerated FB-splitting algorithm (outer
iteration) and the basic FB-splitting algorithm for computing the proximity operator (inner iteration). The
overall procedure is given by

st =
1
2

(
1 +

√
1 + 4s2

t−1

)
f̃ t =

(
1 +

st−1 − 1
st

)
f t−1 +

1− st−1

st
f t−2 (29)

f t =
(

1− τν

σ

)
f̃ t − 1

σ
Ŝ∗
(
Ŝf̃ t − y

)
− ∇̂∗v̄t,

for t = 2, 3, . . . , where v̄t is computed through the iteration

vq = π τ
σB

d
n

(
vq−1 − 1

η
∇̂
(
∇̂∗vq−1 −

(
1− τν

σ

)
f̃ t − 1

σ
Ŝ∗
(
Ŝf̃ t − y

)))
, (30)

for given initializations.
The above algorithm is an inexact accelerated FB-splitting algorithm, in the sense that the proximal or

backward step is computed only approximately. The above discussion on the convergence of FB-splitting al-
gorithms was limited to the case where computation of the proximity operator is done exactly (we refer to this
case as the exact case). The convergence of the inexact FB-splitting algorithm does not follow from this analy-
sis. For the basic – not accelerated – FB-splitting algorithm, convergence in the inexact case is still guaranteed
(without a rate) (Combettes and Wajs, 2005), if the computation of the proximity operator is sufficiently accu-
rate. The convergence of the inexact accelerated FB-splitting algorithm is studied in Villa et al. (2011) where it
is shown that the same convergence rate of the exact case can be achieved, again provided that the accuracy
in the computation of the proximity operator can be suitably controlled. Such a result can be adapted to our
setting to prove the following theorem, as shown in Appendix B.
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Theorem 1. Let εt ∼ t−l with l > 3/2, σ ≥ ‖Ŝ∗Ŝ‖+ τν, η ≥ ‖∇̂∇̂∗‖, and f t given by (29) with v̄t computed through
(30). Define gt =

(
1− τν

σ

)
f̃ t − 1

σ Ŝ
∗
(
Ŝf̃ t − y

)
. If v̄t = vq , for q such that the following condition is satisfied

‖∇̂∗vq − π τ
σCn

(gt)‖H ≤ (εt)2

2dist
(
gt, τσCn

)
+ 4

dτ

σ
‖∇̂∗‖

, (31)

where dist
(
gt, τσCn

)
denotes the distance inH of gt from the set τσCn, then there exists a constant C > 0 such that

Êτ (f t)− Êτ (f̂τ ) ≤ C

t2
,

and thus, if ν > 0,

‖f t − f̂τ‖H ≤ 2
t

√
C

ντ
. (32)

As for the exact accelerated FB-splitting algorithm, the step size of the outer iteration has to be greater than
or equal to L = ‖Ŝ∗Ŝ‖+ τν. In particular, we choose σ = ‖Ŝ∗Ŝ‖+ τν and, similarly, η = ‖∇̂∇̂∗‖.

We add few remarks. First, as it is evident from (32), the choice of ν > 0 allows to obtain convergence
of f t to f̂τ with respect to the norm in H, and positively influences the rate of convergence. This is a crucial
property in variable selection, where it is necessary to accurately estimate the minimizer of the expected risk
f†ρ and not only its minimum E(f†ρ). Second, even if condition (31) requires the knowledge of the asymptotic
solution π τ

σCn
(f t), the same condition is always satisfied if the number of inner iterations is large enough.

The discussion of an implementable stopping rule is given in Section 3.4. Third, we remark that for proving
convergence of the inexact procedure, it is essential that the specific algorithm proposed to compute the prox-
imal step generates a sequence belonging to Cn and satisfying (28). This is not true for the accelerated version
(FISTA), as it does not satisfy (28).

3.4 Further Algorithmic Considerations

We conclude discussing several practical aspects of the proposed method.

The finite dimensional implementation. We start by showing how the representer theorem can be used,
together with the iterations described by (29) and (30), to derive Algorithm 1. This is summarized in the
following proposition.

Proposition 2. For ν > 0 and f0 = 1
n

∑
i α

0
i kxi + 1

n

∑
i

∑
a β

0
a,i(∂ak)xi for any α0 ∈ Rn, β0 ∈ Rnd, the solution at

step t for the updating rule (29) is given by

f t =
1
n

n∑
i=1

αtikxi +
1
n

n∑
i=1

d∑
a=1

βta,i(∂ak)xi (33)

with αt and βt defined by the updating rules (14-13), where v̄t in (16) can be estimated, starting from any v0 ∈ Rnd, and
using the iterative rule (15).

The proof of the above proposition can be found in Appendix B, and is based on the observation that
K,Za,Z,La defined at the beginning of this Section are the matrices associated to the operators ŜŜ∗ : Rn → Rn,
ŜD̂∗a : Rn → Rn, Ŝ∇̂∗ : Rnd → Rn and D̂a∇̂∗ : Rnd → Rn, respectively.

Using the same reasoning we can make the following two further observations. First, one can compute the
step sizes σ and η as σ = ‖K‖+ τν, and η = ‖L‖. Second, since in practice we have to define suitable stopping
rules, Equations (32) and (28) suggest the following choices 5

‖f t − f t−1‖H ≤ ε(ext) and ‖∇̂∗(vq − vq−1)‖H ≤ ε(int).

5In practice we often use a stopping rule where the tolerance is scaled with the current iterate, ‖f t − f t−1‖H ≤ ε(ext)‖f t‖H and
‖∇̂∗(vq − vq−1)‖H ≤ ε(int)‖∇̂∗vq‖H.

12



As a direct consequence of (33) and using the definition of matrices K,Z,L, these quantities can be easily
computed as

‖f t − f t−1‖2H = 〈δα,Kδα〉n + 2〈δα,Zδβ〉n + 〈δβ,Lδβ〉n,
‖∇̂∗(vq − vq−1)‖2H = 〈(vq − vq−1),L(vq − vq−1)〉n.

where we defined δα = αt − αt−1 and δβ = βt − βt−1. Also note that, according to Theorem 1, ε(int) must
depend on the outer iteration as ε(int) = εt ∼ t−2l, l > 3/2.

Finally we discuss a criterion for identifying the variables selected by the algorithm.

Selection. Note that in the linear case f(x) = β · x the coefficients β1, . . . , βd coincide with the partial deriva-
tives, and the coefficient vector β given by `1 regularization is sparse (in the sense that it has zero entries), so
that it is easy to detect which variables are to be considered relevant. For a general non-linear function, we
then expect the vector (‖D̂af‖2n)da=1 of the norms of the partial derivatives evaluated on the training set points,
to be sparse as well. In practice since the projection πτ/σBdn is computed only approximately, the norms of the
partial derivatives will be small but typically not zero. The following proposition elaborates on this point.

Proposition 3. Let v = (va)da=1 ∈ Bdn such that, for any σ > 0

∇̂∗v = − 1
σ
∇(Ê(f̂τ ) + τν‖f̂τ‖2H),

then
‖va‖n < τ

σ
⇒ ‖D̂af̂

τ‖n = 0. (34)

Moreover, if v̄t is given by Algorithm 1 with the inner iteration stopped when the assumptions of Theorem 1 are met,
then there exists ε̃t > 0 (precisely defined in (39)) depending on the tolerance εt used in the inner iteration and satisfying
limt→0 ε̃

t = 0, such that if m := min{‖D̂af̂
τ‖n : a ∈ {1, . . . , d}s.t.‖D̂af̂

τ‖n > 0}.

‖v̄ta‖n ≥
τ

σ
− (ε̃t)2

2m
⇒ ‖D̂af̂

τ‖n = 0. (35)

The above result, whose proof can be found in Appendix B, is a direct consequence of the Euler equation for
Êτ and of the characterization of the subdifferential of Ω̂D1 . The second part of the proof follows by observing
that, as ∇̂∗v belongs to the subdifferential of Ω̂D1 at f̂τ ,∇̂∗v̄t belongs to the approximate subdifferential of Ω̂D1
at f̂τ , where the approximation of the subdifferential is controlled by the precision used in evaluating the
projection. Given the pair (f t, v̄t) evaluated via Algorithm 1, we can thus consider to be irrelevant the variables
such that ‖v̄ta‖n < τ/σ − (ε̃t)2/(2m). Note that the explicit form of ε̃t is given in (39)).

4 Consistency for Learning and Variable Selection

In this section we study the consistency properties of our method. Throughout this section we make the
following assumption which is quite standard in machine learning and trivially verified in classification.

Assumption (A3). There exists M <∞ such that Y ⊆ [−M,M ].

4.1 Consistency

As we discussed in Section 2.2, though in practice we consider the regularizer Ω̂D1 defined in (3), ideally we
would be interested into ΩD

1 (f) =
∑d
a=1 ‖Daf‖ρX , f ∈ H. The following preliminary result shows that indeed

Ω̂D1 is a consistent estimator of ΩD
1 when considering functions inH having uniformly bounded norm.

Theorem 2. Let r <∞, then under assumption (A2)

lim
n→∞P

(
sup
‖f‖H≤r

|Ω̂D1 (f)− ΩD
1 (f)| > ε

)
= 0 ∀ε > 0.
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The restriction to functions such that ‖f‖H ≤ r is natural and is required since the penalty Ω̂D1 forces the
partial derivatives to be zero only on the training set points. To guarantee that a partial derivative, which is
zero on the training set, is also close to zero on the rest of the input space, we must control the smoothness
of the function class where the derivatives are computed. This motivates constraining the function class by
adding the (squared) norm in H into (4). This is in the same spirit of the manifold regularization proposed in
Belkin and Niyogi (2008).

The above result on the consistency of the derivative based regularizer is at the basis of the following
consistency result.

Theorem 3. Under assumptions A1, A2 and A3, recalling that E(f) =
∫

(y − f(x))2 dρ(x, y),

lim
n→∞P

(
E(f̂τn)− inf

f∈H
E(f) ≥ ε

)
= 0 ∀ε > 0,

for any τn satisfying
τn → 0 (

√
nτn)−1 → 0.

The proof is given in the appendix and is based on a sample/approximation error decomposition

E(f̂τ )− inf
f∈H
E(f) ≤ |E(f̂τ )− Eτ (fτ )|︸ ︷︷ ︸

sample error

+ |Eτ (fτ )− inf
f∈H
E(f)|︸ ︷︷ ︸

approximation error

,

where
Eτ (f) := E(f) + 2τΩD

1 (f) + τν‖f‖2H, fτ := argmin
H

Eτ .

The control of both terms allows to find a suitable parameter choice which gives consistency. When estimat-
ing the sample error one has typically to control only the deviation of the empirical risk from its continuos
counterpart. Here we need Theorem 2 to also control the deviation of Ω̂D1 from ΩD

1 . Note that, if the kernel
is universal (Steinwart and Christmann, 2008), then inff∈H E(f) = E(fρ) and Theorem 3 gives the universal
consistency of the estimator f̂τn .

To study the selection properties of the estimator f̂τn– see next section– it useful to study the distance of
f̂τn to fρ in theH-norm. Since in general fρ might not belong toH, for the sake of generality here we compare
f̂τn to a minimizer of inff∈H E(f) which we always assume to exist. Since the minimizers might be more then
one we further consider a suitable minimal norm minimizer f†ρ– see below. More precisely given the set

FH := {f ∈ H | E(f) = inf
f∈H
E(f)}

(which we assume to be not empty), we define

f†ρ := argmin
f∈FH

{ΩD
1 (f) + ν‖f‖2H}.

Note that f†ρ is well defined and unique, since ΩD
1 (·) + ν‖·‖2H is strongly convex and E is convex and lower

semi-continuous onH, which implies that FH is closed and convex inH. Then, we have the following result.

Theorem 4. Under assumptions A1, A2 and A3, we have

lim
n→∞P

(
‖f̂τn − f†ρ‖H ≥ ε

)
= 0, ∀ε > 0,

for any τn such that τn → 0 and (
√
nτ2
n)−1 → 0.

The proof, given in Appendix C, is based on the decomposition in sample error, ‖f̂τ−fτ‖H, and approxima-
tion error, ‖fτ−f†ρ‖H. To bound the sample error we use recent results (Villa et al., 0) that exploit Attouch-Wets
convergence (Attouch and Wets, 1991, 1993a,b) and coercivity of the penalty (ensured by the RKHS norm) to
control the distance between the minimizers f̂τ , fτ by the distance the minima Êτ (f̂τ ) and Eτ (fτ ). Conver-
gence of the approximation error is again guaranteed by standard results in regularization theory (Dontchev
and Zolezzi, 1993).
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4.2 Selection properties

We next consider the selection properties of our method. Following Equation (2), we start by giving the defi-
nition of relevant/irrelevant variables and sparsity in our context.

Definition 1. We say that a variable a = 1, . . . , d is irrelevant with respect to ρ for a differentiable function f , if the
corresponding partial derivative Daf is zero ρX -almost everywhere, and relevant otherwise. In other words the set of
relevant variables is

Rf := {a ∈ {1, . . . , d} | ‖Daf‖ρX > 0}.
We say that a differentiable function f is sparse if ΩD

0 (f) := |Rf | < d.

The goal of variable selection is to correctly estimate the set of relevant variables, Rρ := Rf†ρ . In the following

we study how this can be achieved by the empirical set of relevant variables, R̂τn , defined as

R̂τn := {a ∈ {1, . . . , d}|‖D̂af̂
τn‖n > 0}.

Theorem 5. Under assumptions A1, A2 and A3

lim
n→∞P

(
Rρ ⊆ R̂τn

)
= 1

for any τn satisfying
τn → 0 (

√
nτ2
n)−1 → 0.

The above result shows that the proposed regularization scheme is a safe filter for variable selection, since
it does not discard relevant variables, in fact, for a sufficiently large number of training samples, the set of
truly relevant variables, Rρ, is contained with high probability in the set of relevant variables identified by the
algorithm, R̂τn . The proof of the converse inclusion, giving consistency for variable selection, requires further
analysis that we postpone to a future work.

5 Empirical Analysis

The content of this section is divided into two parts. First we study the properties of the proposed method on
simulated data under different parameter settings. Second we compare our method to related regularization
methods for learning and variable selection.

When we refer to our method we always consider a two-step procedure based on variable selection via
Algorithm 1 and regression on the selected variable via (kernel) Regularized Least Squares (RLS). The kernel
used in both steps is the same. Where possible, we applied the same reweighting procedure to the methods
we compared with.

5.1 Analysis of Our Method

5.1.1 Role of the smoothness enforcing penalty τν‖·‖2H
From a theoretical stand point we have shown that ν has to be nonzero, in order for the proposed regular-
ization problem (4) to be well-posed. We also mentioned that the combination of the two penalties Ω̂D1 and
‖·‖2H ensures that the regularized solution will not depend on variables that are irrelevant for two different
reasons. The first is irrelevance with respect to the output. The second type of irrelevance is meant in an un-
supervised sense. This happens when one or more variables are (approximately) constant with respect to the
marginal distribution ρX , so that the support of the marginal distribution is (approximately) contained in a
coordinate subspace. Here we present two experiments aimed at empirically assessing the role of the smooth-
ness enforcing penalty ‖·‖2H and of the parameter ν. We first present an experiment where the support of the
marginal distribution approximately coincides with a coordinate subspace x2 = 0. Then we systematically
investigate the stabilizing effect of the smoothness enforcing penalty also when the marginal distribution is
not degenerate.
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Figure 3: Effect of the combined regularization Ω̂D1 (·) + ν‖·‖2H on a toy problem in R2 where the support of
marginal distribution approximately coincides with the coordinate subspace x2 = 0. The output labels are
drawn from y = (x1)2 + w, with w ∼ N (0, 0.1).

Adaption to the Marginal Distribution We consider a toy problem in 2 dimensions, where the support of
the marginal distribution ρX (x1, x2) approximately coincides with the coordinate subspace x2 = 0. Precisely
x1 is uniformly sampled from [−1, 1], whereas x2 is drawn from a normal distribution x2 ∼ N (0, 0.05). The
output labels are drawn from y = (x1)2 +w, wherew is a white noise, sampled from a normal distribution with
zero mean and variance 0.1. Given a training set of n = 20 samples i.i.d. drawn from the above distribution
(Figure 3 top-left), we evaluate the optimal value of the regularization parameter τ via hold out validation on
an independent validation set of nval = n = 20 samples. We repeat the process for ν = 0 and ν = 10. In both
cases the reconstruction accuracy on the support of ρX is high, see Figure 3 bottom-right . However, while
ν = 10 our method correctly selects the only relevant variable x1 (Figure 3 bottom-left), when ν = 0 both
variables are selected (Figure 3 bottom-center), since functional Êτ,0 is insensible to errors out of supp(ρX ),
and the regularization term τ Ω̂D1 alone does not penalizes variations out of supp(ρX ) .

Effect of varying ν Here we empirically investigate the stabilizing effect of the smoothness enforcing penalty
when the marginal distribution is not degenerate. The input variables x = (x1, . . . , x20) are uniformly drawn
from [−1, 1]20. The output labels are i.i.d. drawn from y = λ

∑4
a=1

∑4
b=a+1 x

axb + w, where w ∼ N (0, 1),
and λ is a rescaling factor that determines the signal to noise ratio to be 15:1. We extract training sets of size
n which varies from 40 to 120 with steps of 10. We then apply our method with polynomial kernel of degree
p = 4, letting vary ν in {0.1, 0.2, 0.5, 1, 2, 5, 10, 20}. For fixed n and ν we evaluate the optimal value of the
regularization parameter τ via hold out validation on an independent validation set of nval = n samples. We
measure the selection error as the mean of the false negative rate (fraction of relevant variables that were not
selected) and false positive rate (fraction of irrelevant variables that were selected). Then, we evaluate the
prediction error as the root mean square error (RMSE) error of the selected model on an independent test set
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of ntest = 500 samples. Finally we average over 50 repetitions.
In Figure 4 we display the prediction error, selection error, and computing time, versus n for different

values of ν. Clearly, if ν is too small, both prediction and selection are poor. For ν ≥ 1 the algorithm is quite
stable with respect to small variations of ν. However, excessive increase of the smoothness parameter leads
to a decrease in prediction and selection performance. In terms of computing time, the higher the smoothness
parameter the better the performance.

Figure 4: Selection error (left), prediction error (center), and computing time (right) versus n for different
values of ν. The points correspond to the mean over the repetitions. The dotted line represents the white noise
standard deviation. In the left figure the curves corresponding to ν = 5, ν = 10, and ν = 20 are overlapping.

5.1.2 Varying the parameters setting

We present 3 sets of experiments where we evaluated the performance of our method (DENOVAS) when
varying part of the inputs parameters and leaving the others unchanged. The parameters we take into account
are the following

• n, training set size

• d, input space dimensionality

• |Rρ|, number of relevant variables

• p, size of the hypotheses space, measured as the degree of the polynomial kernel.

In all the following experiments the input variables x = (x1, . . . , xd) are uniformly drawn from [−1, 1]d.
The output labels are computed using a noise-corrupted regression function f that depends nonlinearly from
a set of the input variables, i.e. y = λf(x) + w, where w is a white noise, sampled from a normal distribution
with zero mean and variance 1, and λ is a rescaling factor that determines the signal to noise ratio. For fixed
n, d, and |Rρ| we evaluate the optimal value of the regularization parameter τ via hold out validation on an
independent validation set of nval = n samples.

Varying n, d, and |Rρ| In this experiment we want to empirically evaluate the effect of the input space di-
mensionality, d, and the number of relevant variables, |Rρ|, when the other parameters are left unchanged. In
particular we use d = 10, 20, 30, 40 and |Rρ| = 2, 3, 4, 5, 6. For each value of |Rρ| we use a different regression
function, f(x) = λ

∑|Rρ|
a=1

∑|Rρ|
b=a+1 cabx

axb, so that for fixed |Rρ| all 2-way interaction terms are present, and
the polynomial degree of the regression function is always 2. The coefficients cab are randomly drawn from
[.5, 1] And λ is determined in order to set the signal to noise ratio as 15:1. We then apply our method with
polynomial kernel of degree p = 2. The regression function thus always belongs to the hypotheses space.
In Figure 5, we display the selection error, and the prediction error, respectively, versus n for different values of
d and number of relevant variables |Rρ|. Both errors decrease with n and increase with d and |Rρ|. In order to

17



Figure 5: Prediction error (top) and selection error (bottom) versus n for different values of d and number of
relevant variables (|Rρ|). The points correspond to the means over the repetitions. The dotted line represents
the white noise standard deviation.

Figure 6: Minimum number of input points (n) necessary to achieve 10% of average selection error versus the
number of relevant variables |Rρ| for different values of d (left), and versus d for different values of |Rρ| (right).

better visualize the dependance of the selection performance with respect to d and |Rρ|, in Figure 6 we plotted
the minimum number of input points that are necessary in order to achieve 10% of average selection error. It is
clear by visual inspection that |Rρ| has a higher influence than d on the selection performance of our method.

Varying n and p In this experiment we want to empirically evaluate the effect of the size of the hypotheses
space on the performance of our method. We therefore leave unchanged the data generation setting, made
exception for the number of training samples, and vary the polynomial kernel degree as p = 1, 2, 3, 4, 5, 6. We
let d = 20, Rρ = {1, 2}, and f(x) = x1x2, and let vary n from 20 to 80 with steps of 5. The signal to noise ratio
is 3:1.
In Figure 7, we display the prediction and selection error, versus n, for different values of p. For p ≥ 2, that is
when the hypotheses space contains the regression function, both errors decrease with n and increase with p.
Nevertheless the effect of p decreases for large p, in fact for p = 4, 5, and 6, the performance is almost the same.
On the other hand, when the hypotheses space is too small to include the regression function, as for the set of
linear functions (p = 1), the selection error coincides with chance (0.5), and the prediction error is very high,
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Figure 7: Prediction error (left) and selection error (right) versus n for different values of the polynomial kernel
degree (p). The points correspond to the means over the repetitions. The dotted line represents the white noise
standard deviation.

Figure 8: Prediction error (left) selection error (right) versus the number of relevant features. The points corre-
spond to the means over the repetitions. The dotted line represents the white noise standard deviation.

even for large numbers of samples.

Varying the number of relevant features, for fixed |Rρ|: comparison with `1 regularization on the feature
space In this experiment we want to empirically evaluate the effect of the number of features involved in the
regression function ( that is the number of monomials constituting the polynomial) on the performance of our
method when |Rρ| remains the same as well as all other input parameters. Note that while |Rρ| is the number of
relevant variables, here we vary the number of relevant features (not variables!), which, in theory, has nothing
to do with |Rρ|. Furthermore we compare the performance of our method to that of `1 regularization on the
feature space (`1-features). We therefore leave unchanged the data generation setting, made exception for the
regression function. We set d = 10, Rρ = {1, 2, 3}, n = 30, and then use a polynomial kernel of degree 2. The
signal to noise ratio is this time 3:1. Note that with this setting the size of the features space is 66. For fixed
number of relevant features the regression function is set to be a randomly chosen linear combination of the
features involving one or two of the first three variables (x1, (x1)2, x1x2, x1x3, etc.), with the constraint that the
combination must be a polynomial of degree 2, involving all 3 variables.
In Figure 8, we display the prediction and selection error, versus the number of relevant features. While the
performance of `1-features fades when the number of relevant features increases, our method presents stable
performance both in terms of selection and prediction error. From our simulation it appears that, while our
method depends on the number of relevant variables, it is indeed independent of the number of features.
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5.2 Comparison with Other Methods

In this section we present numerical experiments aimed at comparing our method with state-of-the-art al-
gorithms. In particular, since our method is a regularization method, we focus on alternative regularization
approaches to the problem of nonlinear variable selection. For comparisons with more general techniques for
nonlinear variable selection we refer the interested reader to Bach (2009).

5.2.1 Compared algorithms

We consider the following regularization algorithms:

• Additive models with multiple kernels, that is Multiple Kernel Learning (MKL)

• `1 regularization on the feature space associated to a polynomial kernel (`1-features)

• COSSO (Lin and Zhang, 2006) with 1-way interaction (COSSO1) and 2-way interactions (COSSO2) 6

• Hierarchical Kernel Learning (Bach, 2009) with polynomial (HKL pol.) and hermite (HKL herm.) kernel

• Regularized Least Squares (RLS).

Note that, differently from the first 4 methods, RLS is not a variable selection algorithm, however we consider
it since it is typically a good benchmark for the prediction error.

For `1-features and MKL we use our own Matlab implementation based on proximal methods (for details
see Mosci et al. (2010)). For COSSO we used the Matlab code available at www.stat.wisc.edu/˜yilin or
www4.stat.ncsu.edu/˜hzhang which can deal with 1 and 2-way interactions. For HKL we used the code
available online at http://www.di.ens.fr/˜fbach/hkl/index.html. While for MKL and `1-features
we are able to identify the set of selected variables, for COSSO and HKL extracting the sparsity patterns from
the available code is not straightforward. We therefore compute the selection errors only for `1-features, MKL,
and our method .

5.2.2 Synthetic data

We simulated data with d input variables, where each variable is uniformly sampled from [-2,2]. The output
y is a nonlinear function of the first 4 variables, y = f(x1, x2, x3, x4) + ε, where epsilon is a white noise,
ε ∼ N (0, σ2), and σ is chosen so that the signal to noise ratio is 15:1. We consider the 4 models described in
Table 1.

Table 1: Synthetic data design

d
number of

relevant variables n model (f )

additive p=2 40 4 100 y =
∑4
a=1(xa)2

2way p=2 40 4 100 y =
∑4
a=1

∑4
b=a+1 x

axb

3way p=6 40 3 100 y = (x1x2x3)2

radial 20 2 100 y = 1
π ((x1)2 + (x2)2)e−((x1)2+(x2)2)

For model selection and testing we follow the same protocol described at the beginning of Section 5, with
n = 100, 100 and 1000 for training, validation and testing, respectively. Finally we average over 20 repetitions.
In the first 3 models, for MKL, HKL, RLS and our method we employed the polynomial kernel of degree p,
where p is the polynomial degree of the regression function f . For `1-features we used the polynomial kernel
with degree chosen as the minimum between the polynomial degree of f and 3. This was due to computational

6In all toy data, and in part of the real data, the following warning message was displayed:
Maximum number of iterations exceeded; increase options.MaxIter.
To continue solving the problem with the current solution as the starting point,
set x0 = x before calling lsqlin.
In those cases the algorithm did not reach convergence in a reasonable amount of time, therefore the error bars corresponding to COSSO2
were omitted.
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reasons, in fact, with p = 4 and d = 40, the number of features is highly above 100, 000. For the last model, we
used the polynomial kernel of degree 4 for MKL, `1-features and HKL, and the Gaussian kernel with kernel
parameter σ = 2 for RLS and our method 7. COSSO2 never reached convergence. Results in terms of prediction
and selection errors are reported in Figure 9.

Figure 9: Prediction error (top) and fraction of selected variables (bottom) on synthetic data for the proposed
method (DENOVAS), multiple kernel learning for additive models (MKL), `1 regularization on the feature
space associated to a polynomial kernel (`1-features), COSSO with 1-way interactions (COSSO1), hierarchical
kernel learning with polynomial kernel (HKL pol.), and regularized least squares (RLS). The dotted line in the
upper plot corresponds to the white noise standard deviation. Selection errors for COSSO, and HKL are not
reported because they are not straightforwardly computable from the available code.

When the regression function is simple (low interaction degree or low polynomial degree) more tailored
algorithms, such as MKL–which is additive by design– for the experiment “additive p=2”, or `1-features for
experiments “2way p=4” – in this case the dictionary size is less than 1000–, compare favorably with respect to
our method. However, when the nonlinearity of the regression function favors the use of a large hypotheses
space, our method significantly outperforms the other methods. This is particularly evident in the experiment
“radial”, which was anticipated in Section 2, where we plotted in Figure 2 the regression function and its
estimates obtained with the different algorithms for one of the 20 repetitions.

5.2.3 Real data

We consider the 7 benchmark data sets described in Table 2. We build training and validation sets by randomly
drawing ntrain and nval samples, and using the remaining samples for testing. For the first 6 data sets we let
ntrain = nval = 150, whereas for breast cancer data we let ntrain = nval = 60. We then apply the algorithms
described in Subsection 5.2.1. with the validation protocol described in Section 5. For our method and RLS we
used the gaussian kernel with the kernel parameter σ chosen as the mean over the samples of the euclidean

7Note that here we are interested in evaluating the ability of our method of dealing with a general kernel like the Gaussian kernel,
not in the choice of the kernel parameter itself. Nonetheless, a data driven choice for σ will be presented in the real data experiments in
Subsection 5.2.3.
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Table 2: Real data sets

number of number of
data name input variables instances source task

boston housing 13 506 LIACC8 regression
census 16 22784 LIACC regression
delta ailerons 5 7129 LIACC regression
stock 10 950 LIACC regression
image segmentation 18 2310 IDA9 classification
pole telecomm 2610 15000 LIACC regression
breast cancer 32 198 UCI 11 regression

distance form the 20-th nearest neighbor. Since the other methods cannot be run with the gaussian kernel we
used a polynomial kernel of degree p = 3 for MKL and `1-features. For HKL we used both the polynomial
kernel and the hermite kernel, both with p = 3. Results in terms of prediction and selection error are reported
in Figure 10.
Some of the data, such as the stock data, seem not to be variable selection problem, in fact the best perfor-
mance is achieved by our method though selecting (almost) all variables, or, equivalently by RLS. Our method
outperforms all other methods on several data sets. In most cases, the performance of our method and RLS
are similar. Nonetheless our method brings higher interpretability since it is able to select a smaller subset of
relevant variable, while the estimate provided by RLS depends on all variables.

We also run experiments on the same 7 data sets with different kernel choices for our method . We consider
the polynomial kernel with degree p = 2, 3 and 4, and the gaussian kernel. Comparisons among the different
kernels in terms of prediction and selection accuracy are plotted in Figure 11. Interestingly the choice of the
gaussian kernel seems to be the preferable choice in most data sets.

6 Discussion

Sparsity based method has recently emerged as way to perform learning and variable selection from high
dimensional data. So far, compared to other machine learning techniques, this class of methods suffers from
strong modeling assumptions and is in fact limited to parametric or semi-parametric models (additive models).
In this paper we discuss a possible way to circumvent this shortcoming and exploit sparsity ideas in a non-
parametric context.

We propose to use partial derivatives of functions in a RKHS to design a new sparsity penalty and a corre-
sponding regularization scheme. Using results from the theory of RKHS and proximal methods we show that
the regularized estimator can be provably computed through an iterative procedure. The consistency prop-
erty of the proposed estimator are studied. Exploiting the non-parametric nature of the method we can prove
universal consistency. Moreover we study selection properties and show that that the proposed regularization
scheme represents a safe filter for variable selection, as it does not discard relevant variables. Extensive simula-
tions on synthetic data demonstrate the prediction and selection properties of the proposed algorithm. Finally,
comparisons to state-of-the-art algorithms for nonlinear variable selection on toy data as well as on a cohort of
benchmark data sets, show that our approach often leads to better prediction and selection performance.

Our work can be considered as a first step towards understanding the role of sparsity beyond additive
models. Several research directions are yet to be explored.

• From a theoretical point of view it would be interesting to further analyze the sparsity property of the
obtained estimator in terms of finite sample estimates for the prediction and the selection error.

• From a computational point of view the main question is whether our method can be scaled to work in
very high dimensions. Current computations are limited by memory constraints. A variety of method
for large scale optimization can be considered towards this end.

• A natural by product of computational improvements would be the possibility of considering a semi-
supervised setting which is naturally suggested by our approach. More generally we plan to investigate
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Figure 10: Prediction error (top) and fraction of selected variables (center) and computing time (bottom) on real
data for the proposed method (DENOVAS), multiple kernel learning for univariate additive functions (MKL),
`1 regularization on the feature space associated to a polynomial kernel (`1-features), COSSO with 1-way inter-
actions (COSSO1), hierarchical kernel learning with polynomial kernel (HKL pol.), hierarchical kernel learning
with hermite kernel (HKL herm.) and regularized least squares (RLS). Prediction errors for COSSO2 are not re-
ported because it is always outperformed by COSSO1. Furthermore prediction errors for COSSO2 were largely
out of scale in the first three data sets, and were not available since the algorithm did not reach convergence for
image segmentation, pole telecomm and breast cancer data. In order to make the prediction errors comparable
among experiments, root mean squared errors (RMSE) were divided by the outputs standard deviation, which
corresponds to the dotted line. Error bars represent the standard deviations of the normalized RMSE. Though
the largest normalized RMSE appear out of the figure axis, we preferred to display the prediction errors with
the current axes limits in order to allow the reader to appreciate the difference between the smallest, and thus
most significant, errors. Selection errors for COSSO, and HKL are not reported because they are not straight-
forwardly computable from the available code. The computing time corresponds to the entire model selection
and testing protocol. Computing time for RLS is not reported because it was always negligible with respect to
the other methods.
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Figure 11: Prediction error (top) and fraction of selected variables (bottom) on real data for our method with
different kernels: polynomial kernel of degree p = 1, 2 and 3 (DENOVAS pol-p), and Guassian kernel (DENO-
VAS gauss). Error bars represent the standard deviations. In order to make the prediction errors comparable
among experiments, root mean square errors were divided by the outputs standard deviation, which corre-
sponds to the dotted line.

the application of the RKHS representation for differential operators in unsupervised learning.

• More generally, our study begs the question of whether there are alternative/better ways to perform
learning and variable selection beyond additive models and using non parametric models.

Acknowledgements

The authors would like to thank Ernesto De Vito for many useful discussions and suggesting the proof of
Lemma 4. SM and LR would like to thank Francis Bach, Guillame Obozinski and Tomaso Poggio for useful
discussions. This paper describes a joint research work done at and at the Departments of Computer Science
and Mathematics of the University of Genoa and at the IIT@MIT lab hosted in the Center for Biological and
Computational Learning (within the McGovern Institute for Brain Research at MIT), at the Department of
Brain and Cognitive Sciences (affiliated with the Computer Sciences and Artificial Intelligence Laboratory),
The authors have been partially supported by the Integrated Project Health-e-Child IST-2004-027749 and by
grants from DARPA (IPTO and DSO), National Science Foundation (NSF-0640097, NSF-0827427), and Com-
pagnia di San Paolo, Torino. Additional support was provided by: Adobe, Honda Research Institute USA,
King Abdullah University Science and Technology grant to B. DeVore, NEC, Sony and especially by the Eu-
gene McDermott Foundation.

References

N. Aronszajn. Theory of reproducing kernels. Trans. Amer. Math. Soc., 68:337–404, 1950.

24



H. Attouch and R. Wets. Quantitative stability of variational systems. I. The epigraphical distance. Trans. Amer.
Math. Soc., 328(2):695–729, 1991.

H. Attouch and R. Wets. Quantitative stability of variational systems. II. A framework for nonlinear condition-
ing. SIAM J. Optim., 3(2):359–381, 1993a.

H. Attouch and R. Wets. Quantitative stability of variational systems. III. ε-approximate solutions. Math.
Programming, 61(2, Ser. A):197–214, 1993b.

F. Bach. Consistency of the group lasso and multiple kernel learning. Journal of Machine Learning Research, 9:
1179–1225, 2008.

F. Bach. High-dimensional non-linear variable selection through hierarchical kernel learning. Technical Report
HAL 00413473, INRIA, 2009.

F. Bach, G. Lanckriet, and M. Jordan. Multiple kernel learning, conic duality, and the smo algorithm. In ICML,
volume 69 of ACM International Conference Proceeding Series, 2004.

A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM
J. Imaging Sci., 2(1):183–202, 2009.

S. Becker, J. Bobin, and E. Candès. NESTA: a fast and accurate first-order method for sparse recovery. SIAM J.
Imaging Sci., 4(1):1–39, 2011. ISSN 1936-4954.
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A Derivatives in RKHS and Representer Theorem

Consider L2(X , ρX ) = {f : X → Rmeasurable| ∫ |f(x)|2dρX (x) <∞} and Rn with inner product normalized
by a factor 1/n, ‖·‖n.

The operator Ik : H → L2(X , ρX ) defined by (Ikf)(x) = 〈f, kx〉H, for almost all x ∈ X , is well-defined
and bounded thanks to assumption A1. The sampling operator (18) can be seen as its empirical counterpart.
Similarly Da : H → L2(X , ρX ) defined by (Daf)(x) = 〈f, (∂ak)x〉, for almost all x ∈ X and a = 1, . . . d, is well-
defined and bounded thanks to assumption A2. The operator (20) can be seen as its empirical counterpart.
Several properties of such operators and related quantities are given by the following two propositions.

Proposition 4. If assumptions A1 and A2 are met, the operator Ik and the continuous partial derivative Da are Hilbert-
Schmidt operators fromH to L2(X , ρX ), and

I∗kg(t) =
∫
X
kx(t)g(x)dρX (x), I∗kIkf(t) =

∫
X
kx(t)〈f, kx〉HdρX (x)

D∗ag(t) =
∫
X

(∂ak)x(t)g(x)dρX (x), D∗aDbf(t) =
∫
X

(∂ak)x(t)〈f, (∂bk)x〉HdρX (x)

Proposition 5. If assumptions A1 and A2 are met, the sampling operator Ŝ and the empirical partial derivative D̂a are
Hilbert-Schmidt operators fromH to Rn, and

Ŝ∗v =
1
n

n∑
i=1

kxivi, Ŝ∗Ŝf =
1
n

n∑
i=1

kxi〈f, kxi〉H

D̂∗av =
1
n

n∑
i=1

(∂ak)xivi, D̂∗aD̂bf =
1
n

n∑
i=1

(∂ak)xi〈f, (∂bk)xi〉H

where a, b = 1, . . . , d.

The proof can be found in De Vito et al. (2005) for Ik and Ŝ, where assumption A1 is used. The proof for
Da and D̂a is based on the same tools and on assumption A2. Furthermore, a similar result can be obtained
for the continuous and empirical gradient

∇ : H → (L2(X , ρX ))d, ∇f = (Daf)da=1

∇̂ : H → (Rn)d, ∇̂f = (D̂af)da=1,

which can be shown to be Hilbert-Schmidt operators fromH to (L2(X , ρX ))d and fromH to (Rn)d, respectively.

We next restate Proposition 1 in a slightly more abstract form and give its proof.

Proposition (Proposition 1 Extended). The minimizer of (6) satisfies f̂τ ∈ Range(Ŝ∗) + Range(∇̂∗). Henceforth it
satisfies the following representer theorem

f̂τ = Ŝ∗α+ ∇̂∗β =
n∑
i=1

1
n
αikxi +

n∑
i=1

d∑
a=1

1
n
βa,i(∂ak)xi (36)

with α ∈ Rn and β ∈ Rnd.

Proof. Being Range(Ŝ∗)+Range(∇̂∗) a closed subspace ofH, we can write any function f ∈ H as f = f//+f⊥,
where f// ∈ Range(Ŝ∗) + Range(∇̂∗) and 〈f⊥, g〉H for all g ∈ Range(Ŝ∗) + Range(∇̂∗). Now if we plug the
decomposition f = f// + f⊥ in the variational problem (6), we obtain

f̂τ = argmin
f∈H, f=f//+f⊥

{
Ê(f//) + 2τ Ω̂D1 (f//) + τν‖f//‖2H + τν‖f⊥‖2H

}
which is clearly minimized by f⊥ = 0. The second equality in (36) then derives directly from definition of Ŝ∗

and ∇̂∗.
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We conclude with the following example on how to compute derivatives and related quantities for the
Gaussian Kernel.

Example 1. Note that all the terms involved in (33) are explictly computable. As an example we show how to compute

them when k(x, s) = e
− ‖x−s‖2

2γ2 is the gaussian kernel on Rd. By definition

(∂ak)xi(x) = 〈 ∂k(s, ·)
∂sa

∣∣∣∣
s=xi

, kx〉H.

Given x ∈ X it holds

∂k(s, x)
∂sa

= e
− ‖x−s‖2

2γ2 ·
(
−s

a − xa
γ2

)
=⇒ (∂ak)xi(x) = e

− ‖x−xi‖2
2γ2 ·

(
−x

a
i − xa
γ2

)
.

Moreover, as we mentioned above, the computation of βta,i and αti requires the knowledge of matrices K,Za,Z,La. Also
their entries are easily found starting from the kernel and the training points. We only show how the entries of Z and La
look like. Using the previous computations we immediately get

[Za]i,j = e
− ‖xj−xi‖

2

2γ2 ·
(
−x

a
i − xaj
γ2

)
.

In order to compute La we need the second partial derivatives of the kernel:

∂k(s, x)
∂xb∂sa

=


−e−

‖x−s‖2
2γ2 · sa−xaγ2 · sb−xbγ2 if a 6= b

−e−
‖x−s‖2

2γ2 ·
(

(sa−xa)2

γ2 − 1
γ2

)
if a = b.

so that

[La,b]i,j =


−e−

‖xj−xi‖2
2γ2 · x

a
i−xaj
γ2 · x

b
i−xbj
γ2 if a 6= b

−e−
‖xj−xi‖2

2γ2 ·
(

(xai−xaj )2

γ2 − 1
γ2

)
if a = b.

B Proofs of Section 3

In this appendix we collect the proofs related to the derivation of the iterative procedure given in Algorithm
1. Theorem 1 is a consequence of the general results about convergence of accelerated and inexact FB-splitting
algorithms in Villa et al. (2011). In that paper it is shown that inexact schemes converge only when the errors in
the computation of the proximity operator are of a suitable type and satisfy a sufficiently fast decay condition.
We first introduce the notion of admissible approximations.

Definition 2. Let ε ≥ 0 and λ > 0. We say that h ∈ H is an approximation of proxλΩ̂D1
(f) with ε-precision and we

write h uε proxλΩ̂D1
(f), if and only if

f − h
λ
∈ ∂ ε2

2λ
Ω̂D1 (h), (37)

where ∂ ε2
2λ

denotes the ε-subdifferential.12

We will need the following results from Villa et al. (2011).

12Recall that the ε-subdifferential ∂ε of a convex functional Ω : H → R ∪ {+∞} is defined as the set

∂εΩ(f) := {h ∈ H : Ω(g)− Ω(f) ≥ 〈h, g − f〉H − ε, ∀g ∈ H}, ∀f ∈ H.
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Theorem 6. Consider the following inexact version of the accelerated FB-algorithm in (22) with c1,t and c2,t as in (24)

f t uεt prox τ
σ Ω̂D1

((
I − 1

2σ
∇F

)
(c1,tf t−1 + c2,tf

t−2)
)
. (38)

Then, if εt ∼ 1/tl with l > 3/2, there exists a constant C > 0 such that

Êτ (f t)− inf Êτ ≤ C

t2
.

Proposition 6. Suppose that Ω : H → R∪{+∞} can be written as Ω = ω◦B, whereB : H → G is a linear and bounded
operator between Hilbert spaces and ω : G → R∪{+∞} is a one-homogeneous function such that S := ∂ω(0) is bounded.
Then for any f ∈ H and any v ∈ S such that ‖λB∗v − πλB∗(S)(f)‖ ≤ ε2/(2λ‖B∗‖diam(S) + 2‖f − πλB∗(S)(g)‖) it
holds

f − λB∗v uε proxλΩ(f).

Proof of Theorem 1. Since the the regularizer Ω̂D1 can be written as a composition of ω ◦ B, with B = ∇̂ and
ω : Rd → [0,+∞), ω(v) =

∑d
a=1 ‖va‖n Proposition 6 applied with λ = τ/σ, ensures that each sequence

of the type ∇̂∗vq which meets the condition (28) generates, via (29), admissible approximations of prox τ
σ Ω̂D1

.
Therefore, if εt is such that εt ∼ 1/tl with l > 3/2, Theorem 6 implies that the inexact version of the FB-splitting
algorithm in (29) shares the 1/t2 convergence rate. Equation (32) directly follows from the definition of strong
convexity,

τν

8
‖f t − f̂τ‖2 ≤ Êτ (f t)/2 + Êτ (f̂τ )/2− Êτ (f t/2 + f̂τ/2) ≤ 1

2
(Êτ (f t)− Êτ (f̂τ ))

Proof of Proposition 2. We first show that the matrices K,Za,La defined in (8),(9), and (10), are the matrices
associated to the operators ŜŜ∗ : Rn → Rn, ŜD̂∗a : Rn → Rn and D̂a∇̂∗ : Rnd → Rn, respectively. For K, the
proof is trivial and derives directly from the definition of adjoint of Ŝ– see Proposition 5. For Za and Z, from
the definition of D̂∗a we have that(

ŜD̂∗aα
)
i

=
1
n

n∑
j=1

αj(∂ak)xj (xi) =
n∑
j=1

(Za)i,jαj = (Zaα)i,

so that Ŝ∇̂∗β =
∑d
a=1 ŜD̂

∗
a(βa,i)ni=1 =

∑d
a=1 Za(βa,i)ni=1 = Zβ. For La, we first observe that

〈(∂ak)x, (∂bk)x′〉H =
∂(∂bk)x′(t)

∂ta

∣∣∣∣
t=x

=
∂2k(s, t)
∂ta∂sb

∣∣∣∣
t=x,s=x′

,

so that operator D̂aD̂
∗
b : Rn → Rn is given by((
D̂aD̂

∗
b

)
v
)
i

= 〈(∂ak)xi , D̂
∗
bv〉H =

1
n

n∑
j=1

〈(∂ak)xi , (∂bk)xj 〉Hvj = (La,b)i,jvj

for i = 1, . . . , n, for all v ∈ Rn. Then, since D̂a∇̂∗β =
∑d
a=1 D̂aD̂

∗
b (βa,i)ni=1, we have that La is the matrix

associated to the operator D̂a∇̂∗ : Rnd → Rn, that is

(D̂a∇̂∗β)i =
n∑
j=1

d∑
b=1

(La,b)i,jβb,j ,

for i = 1, . . . , n, for all β ∈ Rnd. To prove equation (33), first note that, as we have done in Proposition 1
extended, (33) can be equivalently rewritten as f t = Ŝ∗αt + ∇̂∗βt. We now proceed by induction. The base
case, namely the representation for t = 0 and t = 1, is clear. Then, by the inductive hypothesis we have that
f t−1 = Ŝ∗αt−1 + ∇̂∗βt−1, and f t−2 = Ŝ∗αt−2 + ∇̂∗βt−2 so that f̃ t = Ŝ∗α̃t + ∇̂∗β̃t with α̃t and β̃t defined by
(12) and (13). Therefore, using (22), (29), (25) it follows that f t can be expressed as:(

I − π τ
σ Cn
)(

Ŝ∗
((

1− τν

σ

)
α̃t − 1

σ

(
Kα̃t + Zβ̃t − y

))
+
(

1− τν

σ

)
∇̂∗β̃t

)
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and the proposition is proved, letting α̃t, β̃t and v̄t as in Equations (14), (16) and (26).
For the projection, we first observe that operator D̂aŜ

∗ : Rn → Rn is given by

(D̂aŜ
∗α)i = (〈Ŝ∗α, (∂ak)xi〉H) =

1
n

n∑
j=1

αj(∂ak)xi(xj) =
n∑
j=1

αj(Za)j,i = ZTa α.

Then, we can plug the representation (36) in (30) to obtain (15).

Proof of Proposition 3. Since f̂τ is the unique minimizer of the functional Êτ , it satisfies the Euler equation for
Êτ

0 ∈ ∂(Ê(f̂τ ) + 2τ Ω̂D1 (f̂τ ) + τν‖f̂τ‖2H).

where, for an arbitrary λ > 0, the subdifferential of λΩ̂D1 at f is given by

∂λΩ̂D1 (f) = {∇̂∗v, v=(va)da=1∈(Rn)d | va = λD̂af/‖D̂af‖n if ‖D̂af‖n>0, and ‖va‖n ≤ λ otherwise,∀a = 1, . . . , d}
Using the above characterization and the fact that Ê + τν‖·‖2H is differentiable, the Euler equation is equiv-

alent to
∇̂∗v = − 1

2σ
∇(Ê + τν‖·‖2H)(f̂τ ),

for any σ > 0 , and for some v = (va)da=1 ∈ (Rn)d with v = (va)da=1 ∈ (Rn)d such that

va =
τ

σ

D̂af̂
τ

‖D̂af̂τ‖n
if ‖D̂af̂

τ‖n > 0,

va ∈ τ

σ
Bn otherwise.

In order to prove (34), we proceed by contradiction and assume that ‖D̂af̂
τ‖n > 0. This would imply ‖va‖n =

τ/σ, which contradicts the assumption, hence ‖D̂af̂
τ‖n = 0.

We now prove (35). First, according to Definition 2 (see also Theorem 4.3 in Villa et al. (2011) and Beck and
Teboulle (2009) for the case when the proximity operator is evaluated exactly), the algorithm generates by
construction sequences f̃ t and f t such that

f̃ t − f t − 1
2σ
∇F (f̃ t) ∈ 1

2σ
∂σ(εt)22τ Ω̂D1 (f t) =

τ

σ
∂ σ

2τ (εt)2Ω̂D1 (f t).

where ∂ε denotes the ε-subdifferential13. Plugging the definition of f t from (29) in the above equation, we ob-
tain ∇̂∗v̄t ∈ τ

σ∂ σ
2τ (εt)2Ω̂D1 (f t). Now, we can use a kind of transportation formula (Hiriart-Urruty and Lemaréchal,

1993) for the ε-subdifferential to find ε̃t such that ∇̂∗v̄t ∈ τ
σ∂ σ

2τ (ε̃t)2Ω̂D1 (fτ ). By definition of ε-subdifferential:

Ω̂D1 (f)− Ω̂D1 (f t) ≥ 〈σ
τ
∇̂∗v̄t, f − f t〉H − σ

2τ
(εt)2, ∀f ∈ H.

Adding and subtracting Ω̂D1 (f̂τ ) and 〈στ ∇̂∗vt, f̂τ 〉 to the previous inequality we obtain

Ω̂D1 (f)−Ω̂D1 (f̂τ ) ≥ 〈σ
τ
∇̂∗v̄t, f−f̂τ 〉H− σ

2τ
(ε̃t)2, with (ε̃t)2 = (εt)2+

2τ
σ

(
Ω̂D1 (f t)−Ω̂D1 (f̂τ )

)
+〈2∇̂∗v̄t, f t−f̂τ 〉H.

From the previous equation, using (32) we have

(ε̃t)2 = (εt)2 +

√
C

ντ

(
τ

σ

∑
a

√
‖D̂∗aD̂‖+ 1

)
4
t
, (39)

which implies σ
τ ∇̂∗v̄t ∈ ∂σ(ε̃t)2/2τ Ω̂D1 (f̂τ ). Now, relying on the structure of Ω̂D1 , it is easy to see that

∂εΩ̂D1 (f) ⊆ {∇̂∗v, v=(va)da=1∈(Rn)d | ‖va‖n ≥ 1− ε/‖D̂af‖n if ‖D̂af‖n>0}.

Thus, if ‖D̂af̂
τ‖n > 0 we have ‖v̄t‖ ≥ τ

σ (1− (ε̃t)2

2‖D̂af̂τ‖n ).

13Recall that the ε-subdifferential, ∂ε, of a convex functional Ω : H → R ∪ {+∞} is defined as the set

∂εΩ(f) := {h ∈ H : Ω(g)− Ω(f) ≥ 〈h, g − f〉H − ε, ∀g ∈ H}, ∀f ∈ H.
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C Proofs of Section 4

We start proving the following preliminary probabilistic inequalities.

Lemma 1. For 0 < η1, η2, η3, η4 ≤ 1, n ∈ N, it holds

(1) P
( ∣∣∣‖y‖2n − ∫X×Y y2dρ(x, y)

∣∣∣ ≤ ε(n, η1)
)
≥1−η1 with ε(n, η1)=

2
√

2√
n
M2 log

2
η1

,

(2) P
(
‖Ŝ∗y − I∗kfρ‖H ≤ ε(n, η2)

)
≥1−η2 with ε(n, η2)=

2
√

2√
n
κ1M log

2
η2

,

(3) P
(
‖Ŝ∗Ŝ − I∗kIk‖ ≤ ε(n, η3)

)
≥1−η3 with ε(n, η3)=

2
√

2√
n
κ2

1 log
2
η3

,

(4) P
(
‖D̂∗aD̂a −D∗aDa‖ ≤ ε(n, η4)

)
≥1−η4 with ε(n, η4)=

2
√

2√
n
κ2

2 log
2
η4
.

Proof. From standard concentration inequalities for Hilbert space valued random variables – see for example
(Pinelis and Sakhanenko, 1985)– we have that, if ξ is a random variable with values in a Hilbert space H
bounded by L and ξ1, . . . , ξn are n i.i.d. samples, then

‖ 1
n

n∑
i=1

ξi − E(ξ)‖ ≤ ε(n, η) =
2
√

2√
n
L log

2
η

with probability at least 1−η, η ∈ [0, 1]. The proof is a direct application of the above inequalities to the random
variables,

(1) ξ =y2 ξ ∈ R with supzn ‖ξ‖ ≤M2,
(2) ξ =kxy ξ ∈ H ⊗ R with supzn ‖ξ‖ ≤ κ1M ,
(3) ξ =〈·, kx〉Hkx ξ ∈ HS(H) with supzn ‖ξ‖HS(H) ≤ κ2

1,
(4) ξ =〈·, (∂ak)x〉H(∂ak)x ξ ∈ HS(H) with supzn ‖ξ‖HS(H) ≤ κ2

2.
whereHS(H), ‖·‖HS(H) are the space of Hilbert-Schmidt operators onH and the corresponding norm, respec-
tively (note that in the final bound we upper-bound the operator norm by the Hilbert-Schmidt norm).

Proofs of the Consistency of the Regularizer. We restate Theorem 2 in an extended form.

Theorem (Theorem 2 Extended). Let r <∞, then under assumption (A2), for any η > 0,

P

(
sup
‖f‖H≤r

|Ω̂D1 (f)− ΩD
1 (f)| ≥ rd 2

√
2

(n)1/4
κ2

√
log

2d
η

)
< η. (40)

Consequently

lim
n→∞P

(
sup
‖f‖H≤r

|Ω̂D1 (f)− ΩD
1 (f)| > ε

)
= 0, ∀ε > 0.

Proof. For f ∈ H consider the following chain of inequalities,

|Ω̂D1 (f)− ΩD
1 (f)| ≤

d∑
a=1

∣∣∣‖D̂af‖n − ‖Daf‖ρX
∣∣∣

≤
d∑
a=1

(∣∣∣‖D̂af‖2n − ‖Daf‖2ρX
∣∣∣)1/2

=
d∑
a=1

(∣∣∣〈f, (D̂∗aD̂a −Da
∗Da)f〉H

∣∣∣)1/2

≤
d∑
a=1

‖D̂∗aD̂a −Da
∗Da‖1/2‖f‖H,
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that follows from from |√x − √y| ≤ √|x− y|, the definition of D̂a, Da and basic inequalities. Then, using
d times inequality (d) in Lemma 1 with η/d in place of η4, and taking the supremum on f ∈ H such that
‖f‖H ≤ r, we have with probability 1− η,

sup
‖f‖H≤r

|Ω̂D1 (f)− ΩD
1 (f)| ≤ rd 2

√
2

(n)1/4
κ2

√
log

2d
η
.

The last statement of the theorem follows easily.

Consistency Proofs. To prove Theorem 3, we need the following lemma.

Lemma 2. Let η ∈ (0, 1]. Under assumptions A1 and A3, we have

sup
‖f‖H≤r

|Ê(f)− E(f)| ≤ 2
√

2√
n

(
κ2

1r
2 + 2κ1Mr +M2

)
log

6
η
,

with probabilty 1− η.

Proof. Recalling the definition of Ik we have that,

E(f) =
∫
X×Y

(Ikf(x)− y)2dρ(x, y)

=
∫
X

(Ikf(x))2dρX (x) +
∫
X×Y

y2dρ(x, y)− 2
∫
X×Y

Ikf(x)ydρ(x, y)

=
∫
X

(Ikf(x))2dρX (x) +
∫
X×Y

y2dρ(x, y)− 2
∫
X
Ikf(x)fρ(x)dρX (x)

= 〈f, I∗kIkf〉H +
∫
X×Y

y2dρ(x, y)− 2〈f, I∗kfρ〉H.

Similarly Ê(f) = 〈f, Ŝ∗Ŝf〉H + ‖y‖2n − 2〈f, Ŝ∗fρ〉H. Then, for all f ∈ H, we have the bound

|Ê(f)− E(f)| ≤ ‖Ŝ∗Ŝ − I∗kIk‖‖f‖2H + 2‖Ŝ∗y − I∗kfρ‖H‖f‖H +
∣∣∣∣‖y‖2n − ∫X×Y y2dρ(x, y)

∣∣∣∣
The proof follows applying Lemma 1 with probabilities η1 = η2 = η3 = η/3.

We now prove Theorem 3. We use the following standard result in regularization theory (see for example
(Dontchev and Zolezzi, 1993)) to control the the approximation error.

Proposition 7. Let τn → 0, be a positive sequence. Then we have that

Eτn(fτn)− inf
f∈H
E(f)→ 0.

Proof of Theorem 3. We recall the standard sample/approximation error decomposition

E(f̂τ )− inf
f∈H
E(f) ≤ |E(f̂τ )− Eτ (fτ )|+ |Eτ (fτ )− inf

f∈H
E(f)| (41)

where Eτ (f) = E(f) + 2τΩD
1 (f) + τν‖f‖2H.

We first consider the sample error. Toward this end, we note that

τν‖f̂τ‖2H ≤ Êτ (f̂τ ) ≤ Êτ (0) = ‖y‖2n =⇒ ‖f̂τ‖H ≤ ‖y‖n√
τν
≤ M√

τν
,
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and similarly ‖fτ‖H ≤ (
∫
X y

2dρ)1/2/
√
τν ≤ M√

τν
.

We have the following bound,

E(f̂τ )− Eτ (fτ ) ≤ (E(f̂τ )− Ê(f̂τ )) + Ê(f̂τ )− Eτ (fτ )

≤ (E(f̂τ )− Ê(f̂τ )) + Êτ (f̂τ )− Eτ (fτ )

≤ (E(f̂τ )− Ê(f̂τ )) + Êτ (fτ )− Eτ (fτ )

≤ (E(f̂τ )− Ê(f̂τ )) + (Ê(fτ )− E(fτ )) + τ(Ω̂D1 (fτ )− ΩD
1 (fτ ))

≤ 2 sup
‖f‖H≤ M√

τν

|Ê(f)− E(f)|+ τ sup
‖f‖H≤ M√

τν

|Ω̂D1 (f)− ΩD
1 (f)|.

Let η′ ∈ (0, 1]. Using Lemma 2 with probability η = 3η′/(3 + d), and inequality (40) with η = dη′/(3 + d), and
if η′ is sufficiently small we obtain

E(f̂τ )− Eτ (fτ ) ≤ 4
√

2√
n
M2

(
κ2

1

τν
+

2κ1√
τν

+ 1
)

log
6 + 2d
η′

+ τ
2
√

2
(n)1/4

d
M√
τν
κ2

√
log

6 + 2d
η′

.

with probability 1− η′. Furthermore, we have the bound

E(f̂τ )− Eτ (fτ ) ≤ c
(
Mκ2

1

n1/2τν
+
τ1/2dκ2

n1/4
√
ν

)
log

6 + 2d
η′

(42)

where c does not depend on n, τ, ν, d. The proof follows, if we plug (42) in (41) and take τ = τn such that
τn → 0 and (τn

√
n)−1 → 0, since the approximation error goes to zero (using Proposition 7) and the sample

error goes to zero in probability as n→∞ by (42).

We next consider convergence in the RKHS norm. The following result on the convergence of the approxi-
mation error is standard (Dontchev and Zolezzi, 1993).

Proposition 8. Let τn → 0, be a positive sequence. Then we have that

‖f†ρ − fτn‖H → 0.

We can now prove Theorem 4. The main difficulty is to control the sample error in the H-norm. This requires
showing that controlling the distance between the minima of two functionals, we can control the distance
between their minimizers. Towards this end it is critical to use the results in Villa et al. (0) based on Attouch-
Wetts convergence. We need to recall some useful quantities. Given two subsets A and B in a metric space
(H, d), the excess of A on B is defined as e(A,B) := supf∈A d(f,B), with the convention that e(∅, B) = 0 for
every B. Localizing the definition of the excess we get the quantity er(A,B) : e(A ∩ B(0, r), B) for each ball
B(0, r) of radius r centered at the origin. The r-epi-distance between two subsets A and B of H, is denoted by
dr(A,B) and is defined as

dr(A,B) := max{er(A,B), er(B,A)}.
The notion of epi-distance can be extended to any two functionals F,G : H → R by

dr(G,F ) := dr(epi(G), epi(F )),

where for any F : H → R, epi(F) denotes the epigraph of F defined as

epi(F ) := {(f, α), F (f) ≤ α}.

We are now ready to prove Theorem 4, which we present here in an extended form

Theorem (Theorem 4 Extended). Under assumptions A1, A2 and A3,

P
(
‖f̂τ − f†ρ‖H ≥ A(n, τ)1/2 + ‖fτ − f†ρ‖H,

)
< η (43)
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where

A(n, τ) = 4
√

2M
(

4κ2
1M√

nτ2ν2
+

4κ1√
nτν
√
τν

+
1√
nτν

+
2dκ2

n1/4ν
√
τν

)
for 0 < η ≤ 1. Moreover,

lim
n→∞P

(
‖f̂τn − f†ρ‖H ≥ ε

)
= 0, ∀ε > 0,

for any τn such that τn → 0 and (
√
nτ2
n)−1 → 0.

Proof of Theorem 4. We consider the decomposition of ‖f̂τ − f†ρ‖H into a sample and approximation term,

‖f̂τ − f†ρ‖H ≤ ‖f̂τ − fτ‖H + ‖fτ − f†ρ‖H. (44)

From Theorem 2.6 in Villa et al. (0) we have that

ψ�τν(‖f̂τ − fτ‖H) ≤ 4dM/
√
τν(tEτEτ , tEτ Êτ )

where ψ�τν(t) := inf{ τν2 s2 + |t− s| : s ∈ [0,+∞)}, and tEτ is the translation map defined as

tEτG(f) = G(f + fτ )− Eτ (fτ )

for all G : H → R.
From Theorem 2.7 in Villa et al. (0), we have that

dM/
√
τν(tEτEτ , tEτ Êτ ) ≤ sup

‖f‖H≤M/
√
τν

|tEτEτ (f)− tEτ Êτ (f)|.

We have the bound,

sup
‖f‖H≤M/

√
τν

|tEτEτ (f)− tEτ Êτ (f)| ≤ sup
‖f‖H≤M/

√
τν+‖fτ‖H

|Eτ (f)− Êτ (f)|

≤ sup
‖f‖H≤2M/

√
τν

|E(f)− Ê(f)|+ τ sup
‖f‖H≤2M/

√
τν

|ΩD
1 (f)− Ω̂D1 (f)|.

Using Theorem 2 (equation (40)) and Lemma 2 we obtain with probability 1− η′, if η′ is small enough,

dM/
√
τν(tEτEτ , tEτ Êτ ) ≤ 2

√
2√
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1

4M2
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+ 4κ1
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)
log

6 + 2d
η′

+ τ
2M√
τν
d

2
√

2
n1/4
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√
log

6 + 2d
η′

≤ 2
√

2M
(

4κ2
1M√
nτν

+
4κ1M√
n
√
τν

+
M√
n

+ τ
2dκ2

n1/4
√
τν

)
log

6 + 2d
η′

. (45)

From the definition of ψ�τν it is possible to see that we can write explicitly (ψ�τν)−1 as

(ψ�τν)−1(y) =

{√
2y
τν if y < 1

2τν

y + 1
2τ otherwise.

Since τ = τn → 0 by assumption, for sufficiently large n, the bound in (45) is smaller than 1/2τν, and we obtain
that with probability 1− η′,

‖f̂τ − fτ‖H ≤
(

4
√

2M
(

4κ2
1M√

nτ2ν2
+

4κ1√
nτν
√
τν

+
1√
nτν

+
2dκ2

n1/4ν
√
τν

))1/2
√

log
6 + 2d
η′

. (46)

If we now plug (46) in (44) we obtain the first part of the proof. The rest of the proof follows by taking
the limit n → ∞, and by observing that, if one chooses τ = τn such that τn → 0 and (τ2

n

√
n)−1 → 0, the

assumption of Proposition 8 is satisfied and the bound in (46) goes to 0, so that the limit of the sum of the
sample and approximation terms goes to 0.
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Proofs of the Selection properties. In order to prove our main selection result, we will need the following
lemma.

Lemma 3. Under assumptions A1, A2 and A3 and defining A(n, τ) as in Theorem 4 extended, we have, for all a =
1, . . . , d and for all ε > 0,

P
( ∣∣∣‖D̂af̂

τ‖2n − ‖Daf
†
ρ‖2ρX

∣∣∣ ≥ ε) < (6 + 2d)exp
(
−ε− b(τ)
a(n, τ)

)
,

where a(n, τ) = 2 max{ 2
√

2M2κ2
2√

nτν
, 2κ2

2A(n, τ)} and limτ→0 b(τ) = 0.

Proof. We have the following set of inequalities∣∣∣‖D̂af̂
τ‖2n − ‖Daf

†
ρ‖2ρX

∣∣∣ = |〈f̂τ , D̂∗aD̂af̂
τ 〉H − 〈f†ρ , D∗aDaf

†
ρ〉H+

〈f̂τ , D∗aDaf̂
τ 〉H − 〈f̂τ , D∗aDaf̂

τ 〉H+

〈f†ρ , D∗aDaf̂
τ 〉H − 〈f†ρ , D∗aDaf̂

τ 〉H|
=
∣∣∣〈f̂τ , (D̂∗aD̂a −D∗aDa)f̂τ 〉H + 〈f̂τ − f†ρ , D∗aDa(f̂τ − f†ρ)〉H

∣∣∣
≤ ‖D̂∗aD̂a −D∗aDa‖M

2

τν
+ κ2

2‖f̂τ − f†ρ‖2H

≤ ‖D̂∗aD̂a −D∗aDa‖M
2

τν
+ 2κ2

2‖f̂τ − fτ‖2H + 2κ2
2‖fτ − f†ρ‖2H.

Using Theorem 4 extended, equation (46), and Lemma 1 with probability η4 = η/(3 + d), we obtain with
probability 1− η∣∣∣‖D̂af̂

τ‖2n − ‖Daf
†
ρ‖2ρX

∣∣∣ ≤ 2
√

2M2κ2
2√

nτν
log

6 + 2d
η

+ 2κ2
2A(n, τ) log

6 + 2d
η

+ 2κ2
2‖fτ − f†ρ‖2H.

We can further write ∣∣∣‖D̂af̂
τ‖2n − ‖Daf

†
ρ‖2ρX

∣∣∣ ≤ a(n, τ) log
6 + 2d
η

+ b(τ),

where a(n, τ) = 2 max{ 2
√

2M2κ2
2√

nτν
, 2κ2

2A(n, τ)} and limτ→0 b(τ) = 0 according to Proposition 8. The proof follows
by writing ε = a(n, τ) log 6+2d

η + b(τ) and inverting it with respect to η.

Finally we can prove Theorem 5.

Proof of Theorem 5. We have

P
(
Rρ ⊆ R̂τ

)
= 1− P

(
Rρ 6⊆ R̂τ

)
= 1− P

 ⋃
a∈Rρ
{a /∈ R̂τ}

 ≥ 1−
∑
a∈Rρ

P
(
a /∈ R̂τ

)

Let us now estimate P
(
a /∈ R̂τ

)
or equivalently P

(
a ∈ R̂τ

)
= P

(
‖D̂af̂

τ‖2n > 0
)

, for a ∈ Rρ. Let C <

mina∈Rρ ‖Daf
†
ρ‖2ρX . From Lemma 3, there exist a(n, τ) and b(τ) satisfying limτ→0 b(τ) = 0, such that∣∣∣‖Daf

†
ρ‖2ρX − ‖D̂af̂

τ‖2n
∣∣∣ ≤ ε

with probability 1− (6 + 2d)exp
(
− ε−b(τ)
a(n,τ)

)
, for all a = 1, . . . , d. Therefore, for ε = C, for a ∈ Rρ, it holds

‖D̂af̂
τ‖2n ≥ ‖Daf

†
ρ‖2ρX − C 
 0.

with probability 1− (6 + 2d)exp
(
−C−b(τ)

a(n,τ)

)
. We than have

P
(
a ∈ R̂τ

)
= P

(
‖D̂af̂

τ‖2n > 0
)
≥ 1− (6 + 2d)exp
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−C − b(τ)

a(n, τ)

)
,
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so that P
(
a /∈ R̂τ

)
≤ (6 + 2d)exp

(
−C−b(τ)

a(n,τ)

)
. Finally, if we let τ = τn satisfying the assumption, we have

limn b(τn)→ 0, limn a(n, τn)→ 0, so that

lim
n→∞P

(
Rρ ⊆ R̂τn

)
≥ lim

n→∞

[
1− |Rρ|(6 + 2d)exp

(
−C − c(τn)

a(n, τn)

)]
= 1− |Rρ|(6 + 2d) lim

n→∞ exp
(
−C − b(τn)

a(n, τn)

)
= 1.

D Some Connections with Structured Sparsity Regularization Approaches

As already mentioned in the Introduction, a number of authors consider a dictionary of nonlinear features
(φγ(x))γ∈Γ – so that any function can be identified with a coefficient vector defining its expansion with re-
spect to the dictionary, fβ =

∑
γ∈Γ βγφγ – and use a (structured) sparsity based algorithm to select the rel-

evant elements of the dictionary. We recall that given a finite dictionary (φγ(x))γ∈Γ and a function fβ(x) =∑
γ∈Γ βγφγ(x), a structured sparsity penalty is of the form:

ΩStr.Sp.(β) =
p∑
a=1

‖Aaβ‖Rda

whereAa : R|Γ| → Rda are linear bounded operators for a = 1, . . . , p. For more details see Zhao et al. (2009), Ja-
cob et al. (2009), Negahban et al. (2009), Jenatton et al. (2010), Mosci et al. (2010) and references therein.

`1 regularization on the feature space The simplest of such approaches simply amounts to penalizing the
`1 norm of the coefficient vector,

Ω`
1-features(β) =

∑
γ∈Γ

|βγ |

and thus induces selection with respect to the features rather than on the input variables.

Additive models Another approach is that of considering additive models where the hypotheses space is the
space of linear combinations of nonlinear functions, each one depending on a single variable only, H = {f =∑d
a=1 fa(xa), fa ∈ Ha}. Variable selection can thus be enforced via Multiple Kernel Learning algorithms (see

for example Bach et al., 2004; Bach, 2008; Ravikumar et al., 2008), with the penalty

ΩMKL(f) =
d∑
a=1

‖fa‖Ha .

If each space Ha is finite dimensional, it admits a finite set of features (φaγ)γ∈Γ(a) , so that each function in H is
identified with the set of coefficients β = (β1, . . . , βd) ∈ R

∑
a |Γa| since fβ =

∑d
a=1

∑
γ∈Γ(a) βaγφ

a
γ , and the MKL

penalty can be viewed as a structured sparsity penalty

ΩMKL(fβ) =
d∑
a=1

‖βa‖R|Γ(a)| =
d∑
a=1

‖Aaβ‖R|Γ(a)|

where Aa : R|Γ| → R|Γ(a)| extracts the elements of β corresponding to space Ha, that is [Aa]γ,γ′ = δγ,γ′ if
γ, γ′ ∈ Γ(a) and 0 otherwise.
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Hierarchical kernel learning A more advanced approach would be to consider dictionaries encoding more
complex interactions among the variables (Lin and Zhang, 2006). For example, one could consider the features
defined by a second-degree polynomial kernel in order to take into account 2-way interactions among vari-
ables. The shortcoming of this approach is that the size of the dictionary grows more than exponentially as
one considers higher orders of interactions. For instance, for 40 variables with a polynomial kernel of degree 4
– in this case the interaction degree is at most 4 –, the dictionary size is already highly above 100,000. Recently,
Bach (2009) showed that it is still possible to learn with such dictionaries if the atoms of the dictionary are
embedded into a directed acyclic graph, and the admissible sparsity patterns coincides with suitably chosen
subnetworks of the graph. The penalty proposed in Bach (2009) for nonlinear variable selection is given by

ΩHKL(β) =
p∑
a=1

‖Aaβ‖Rda

where p is the number of admissible subnetworks of the graph, and Aa extracts the da atoms belonging to the
a-th subnetwork.

Our approach differs from these latter works since we do not try to design dictionaries encoding variables
interactions but we use partial derivatives to derive a new regularizer that induces a different form of sparsity.
Interestingly it is possible to show that, if RKHSH admits a finite set of nonlinear features, the proposed penalty
can be written as a structured sparsity penalty with suitable sparsity patterns and data dependent weights.

In fact, if the hypotheses space H is a space of sufficiently smooth functions the partial derivative is a
bounded linear operator in H. Therefore, given a finite set of nonlinear features (φγ(x))γ∈Γ associate to H,
there exists Da ∈ R|Γ| ⊗ R|Γ| such that

∂φγ(x)
∂xa

=
∑
γ′∈Γ

Da
γγ′φγ′(x),

and, for all fβ(x) =
∑
γ∈Γ βγφγ(x) we can write

∂fβ(x)
∂xa

∣∣∣∣
x=xi

=
∑
γ,∈Γ

βγ
∂φγ(x)
∂xa

∣∣∣∣
x=xi

=
∑
γ,∈Γ

βγ
∑
γ′∈Γ

Da
γγ′φγ′(xi)︸ ︷︷ ︸

[Aazn ]i,γ

:= (Aaznβ)i

where Aazn : R|Γ| → Rn are linear bounded operators for all a = 1, . . . , d. The DENOVAS penalty thus writes

Ω̂D1 (fβ) =
1√
n

d∑
a=1

‖Aaznβ‖Rn .

The above expression for the penalty also highlights the differences of the proposed approach with respect
to the regularization approaches to nonlinear variable selection described above. In fact, the `1 penalty on
the feature space is totally unaware of the dependancy of f on the original variables, and therefore performs
selection with respect to the features, not the variables. The MKL penalty differs from Ω̂D1 in that it does not
couple the features corresponding to different variables, since the dictionary has no interaction terms by con-
struction. Finally, the HKL penalty proposed in Bach (2009) is substantially different from Ω̂D1 , since, while for
HKL [Aa]γ,γ′ belongs to {0, 1} and is thus independent of zn, in Ω̂D1 the Aazn are data dependent, precisely they
depend on the value of the partial derivatives of the kernel evaluated in the training set points. Furthermore
both `1 regularization and HKL can only deal with finite dimensional spaces, and therefore the correspond-
ing regularized solution are not universally consistent. The MKL penalty is the only one that can potentially
deal with infinite dimensional spaces, however the hypotheses space is never dense in L2(X , ρX ) due to its
univariate nature, and universal consistency is thus precluded.
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