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Abstract The regularization parameter choice is a fundamental problem in Learn-
ing Theory since the performance of most supervised algorithms crucially depends
on the choice of one or more of such parameters. In particular a main theoretical
issue regards the amount of prior knowledge needed to choose the regularization pa-
rameter in order to obtain good learning rates. In this paper we present a parameter
choice strategy, called the balancing principle, to choose the regularization parameter
without knowledge of the regularity of the target function. Such a choice adaptively
achieves the best error rate. Our main result applies to regularization algorithms in
reproducing kernel Hilbert space with the square loss, though we also study how a
similar principle can be used in other situations. As a straightforward corollary we
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can immediately derive adaptive parameter choices for various kernel methods re-
cently studied. Numerical experiments with the proposed parameter choice rules are
also presented.

Keywords Learning Theory · Model Selection · Adaptive Regularization · Inverse
Problems

Mathematics Subject Classification (2000) Primary 68T05 · 68Q32

1 Introduction

Most supervised learning algorithms depend on some tuning parameter, whose cor-
rect choice is crucial to ensure good performances of the solution. Examples are the
regularization parameter in regularized least-squares regression [20] or the complex-
ity of the hypothesis space in empirical risk minimization [41]. The error incurred by
a learning algorithm is usually the sum of two terms, sample and approximation er-
rors, having opposite behavior with respect to the tuning parameter [11]—see Fig. 1.
In this context a natural parameter choice is obtained via a trade-off between sample
and approximation error. This choice is shown to often provide optimal convergence
rates in a mini-max setting [4, 8, 11, 23, 35] and we refer to it as the best parameter
choice.

The above strategy raises conceptual and practical issues since estimates of the
approximation error depend on a priori knowledge on the problem which is usually
not available. The so-called no free lunch theorem shows that no data-independent
parameter choice can achieve the best convergence rate [23]. To overcome this prob-
lem, a data-driven choice is needed, ensuring the error rate of the solution achieves
the best possible rate. In the statistical literature this problem is known as the prob-
lem of adaptive model selection [16, 23]. In regression models with fixed design,
classical model selection schemes include the Akaike criterion and BIC among oth-
ers (see [24] for references). In the setting of learning, where the design is random,
some well-known techniques for adaptive parameter choice are based on complexity
regularization (see [2, 5, 17, 23] for general references and also [3, 27]), on data split-
ting, e.g., hold-out and cross-validation (see [17] and more recently [9, 18, 40]) and
on aggregation [39]. In particular the application of aggregation techniques to select
regularization parameters is recently discussed in [21]. In this paper we are interested
in regularization parameter choices that do not require any data splitting.

Based on the relation between learning theory and the theory of regularization in
inverse problems—see [14, 20, 31, 34, 41] and references therein—in this paper we
study a data-driven method for a regularization parameter choice, namely the balanc-
ing principle. This method is a development of an approach proposed by [26] in the
context of Gaussian regression, and has been studied in the context of inverse prob-
lems in [22] and eventually developed in a series of papers (see [28] and references
therein). Related approaches have been considered in statistical learning for aggre-
gation of classifiers [39] and for empirical risk minimization algorithms [25]. Here
we extend the approach proposed in [22] which is very natural when considering
regularized kernel methods.
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The approaches to a posteriori parameter choice in inverse problems cannot be
used directly in the context of learning, since they are based on estimates of the stabil-
ity of regularization methods as measured in the space where the element of interest
(regression or target function) should be recovered. In the context of learning theory,
typically, such estimates are measured with respect to the expected risk which de-
pends on the unknown probability measure. In this paper we discuss how the inverse
problems results can be adapted to the learning setting. The method we introduce is
simple, requires no data splitting, and adaptively achieves the best possible error rate.
The proposed method allows to easily derive adaptive parameter choices achieving
optimal rates for several kernel methods [4, 7, 8, 35, 43] and we believe it might serve
as a general way to obtain adaptive regularization schemes in kernel spaces.

The paper is organized as follows. In Sect. 2 we give the necessary background on
supervised learning and discuss in some detail the problem of adaptive regularization
parameter choice. In Sect. 3 we present and discuss our main results, while the proofs
are postponed to Sect. 4. We conclude in Sect. 5 with some numerical experiments.

2 Regularized Learning and Adaptive Parameter Choice

In this section, after recalling the basic concepts in supervised learning, we discuss
the problem of adaptive regularization parameter choice motivating the study in this
paper.

2.1 Some Background on Supervised Learning

We consider the problem of supervised learning [11, 41]. Given a training set, z =
(x,y) = (x1, y1), . . . , (xn, yn), the goal is to find an input–output relation f : X → Y .
More precisely, x ∈ X ⊂ R

d , y ∈ Y ⊆ R, and the data are sampled identically and
independently from an unknown probability measure ρ on X × Y . For a chosen loss
function � : X × R → R

+, the error incurred by a function is measured by the ex-
pected risk

E (f ) =
∫

X×Y

�
(
y,f (x)

)
dρ(x, y),

and in this paper we are primarily interested in the square loss �(y,f (x)) =
(y − f (x))2. The search for a possible estimate is typically restricted to a hypotheses
space H, e.g., splines [42] or reproducing kernel Hilbert (RKH) spaces [1, 11]. In
this case the ideal solution is the (so-called) best in the model1 fH such that

E (fH) = min
f ∈H

E (f ).

This solution cannot be computed in practice since ρ is unknown and a learning
algorithm can be seen as a map z → fz ∈ H, that given a training set provides us with

1Note that existence and uniqueness of the solution to the above problem typically requires conditions on
H and �. In the following we assume throughout that fH exists.
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an estimator fz of fH. To assess the quality of an estimator we need to fix: an error
measure to quantify how well fz approximates fH; some probabilistic tools, since fz
is a random variable.

We will measure errors either with respect to the expected risk, or with respect to
a norm ‖·‖ if the estimator and the target function belong to some normed hypotheses
space [38]. This latter case is of interest for estimators in RKHS since estimates in
various other norms, e.g., uniform norm or Sobolev norms, can be easily obtained—
see [35]. Also, it is of interest in sparse learning—see [13] and references therein—
where one is interested in estimating the coefficients obtained expanding fH on a
given dictionary.

The error bounds we consider are standard in statistical learning, and correspond
to probabilistic inequalities of the form

P
(

E (fz) − E (fH) > ε(n,η)
) ≤ η, (1)

where 0 < η ≤ 1. The above inequality is called an excess risk bound. Equivalently,
we have E (fz) − E (fH) ≤ ε(n, η), where the last inequality holds with probability at
least 1 − η. Similarly, when the error is measured by a fixed norm, one can consider

‖fz − fH‖ ≤ ε(n, η). (2)

As we mentioned before, it is well known that to obtain finite sample bounds prior
assumptions on the problem at hand are required [16, 17, 23]. The impact of this fact
on the design of a fully data-driven algorithm is at the basis of the study in this paper.
In the next section, we discuss this point of view in detail.

2.2 Regularization Parameter Choice

In the previous section we considered an algorithm as a map z → fz, but in practice
most algorithms can be seen as a two-step procedure. The first step defines a family
of solutions depending on a real regularization parameter z → f λ

z , λ > 0, whereas
the second step determines how to choose the regularization parameter λ. The final
estimator is obtained only when both steps are defined. Among other algorithms,
regularization networks [20] and support vector machines [41] can be cast in this
framework.

One fundamental approach to model selection, in learning theory [5, 12, 36, 41]
as well as in non-parametric regression [23], is based on deriving excess risk bounds
for any λ, and choose the value optimizing the bound. More precisely, excess risk
bounds are usually given by the sum of two competing terms, i.e.,

E
(
f λ

z
) − E (fH) ≤ S(n, η,λ) + A(λ). (3)

The term S(n, η,λ) is the so-called sample error and quantifies the error due to ran-
dom sampling. The term A(λ) is the approximation error; it does not depend on the
data, but requires prior knowledge on the unknown probability distribution. The typ-
ical behavior of the two terms (for fixed n) is depicted in Fig. 1.

The best possible regularization parameter choice is found by solving a sample-
approximation (or bias-variance) trade-off, that is from the balancing of these two
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Fig. 1 The figure represents the
behavior of sample and
approximation errors,
respectively S(n, η,λ) and
A(λ), as functions of λ, for
fixed n,η

terms. In this paper, rather than the value optimizing the bound, we consider the
value of λo(n) making the contribution of the two terms equal2 (the crossing point in
Fig. 1). One can see that the corresponding error estimate is, with probability at least
1 − η

E
(
f λo(n)

z
) − E (fH) ≤ 2S(n, η,λo) = 2A(λo). (4)

Before developing our reasoning further we give an example.

Example 1 (Regularized Least Squares) Consider the regularized least-squares esti-
mator f λ

z solving

min
f ∈H

{
1

n

n∑
i=1

(
yi − f (xi)

)2 + λ‖f ‖2
H

}
,

where H is a RKH space [1] with bounded kernel K and ‖·‖H the corresponding
norm. The regularity assumption is that

fH = Lr
Ku, LKf (x) =

∫
X

K(x, s)f (s)dρ
X
(s), (5)

for some u such that
∫ |u(x)|2 dρX(x) < ∞, where ρX denotes the marginal proba-

bility of ρ on X. In this case, one can prove [4, 7, 8, 35] that

E
(
f λ

z
) − E (fH) ≤ C log

(
4

η

)(
1

λn
+ λ2r

)
,

1

2
< r ≤ 1, (6)

where E (f ) = ∫
(y − f (x))2 dρ(x, y) and C does not depend on n,η,λ. The best

possible choice for λ and the corresponding rate are

λo(n) = n− 1
2r+1 , O

(
n− 2r

2r+1
)
,

1

2
< r ≤ 1,

where the regularity of the target function is encoded in the index r .

From the above discussion, one can see that the parameter choice λo(n) depends
on the regularity properties of fH that are usually not known. This observation mo-

2The two choices might in general different but if the sample and approximation errors depend polynomi-
ally on λ, they are equivalent in terms of learning rates, that is dependence on the number of samples n.
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tivates the interest in the adaptive parameter choice that we study in this paper. We
conclude this section with two remarks.

Remark 1 (Optimality and Minimax Results) In this paper we refer to the value λo(n)

as the best choice and to the corresponding rate as the best possible rate. However,
the rate will be optimal in a minimax sense if the bound we started from is tight. We
do not discuss this problem and we refer to [8, 16, 23, 38] for further discussion.

Remark 2 (Optimality and Order Optimality) In our analysis we can usually compute
the value of essentially all the constants appearing, but we do not expect such con-
stants to be optimal. For this reason we often take fairly crude estimates, and in fact
we mainly focus on recovering the correct dependence on the number of samples.
This is related to the difference between order optimality and optimality in inverse
problems [19].

3 Adaptive Regularized Learning

In this section we state the main results in the paper. Our main result in Sect. 3.2 deals
with adaptive parameter selection for kernel methods when the error is measured via
the excess risk, but we first present some auxiliary results when the hypotheses space
is a normed space and we measure the error via the norm in the space. These latter
results can be of interest in their own right and clarify the main intuition underlying
the balancing principle.

3.1 Adaptive Learning when the Error Measure is Known

We assume both the estimator and the best in the model to be elements of some
normed space whose norm we denote with ‖·‖. Such a norm is assumed to be known
(note that on the contrary the risk is not).

Again we assume that an error bound of the form

‖fz − fH‖ ≤ S(n, η,λ) + A(λ)

is available and further assume that

S(n, η,λ) = α(η)

ω(λ)γ (n)

where α(η) > 1 and ω,γ are positive functions. This latter assumption is typically
satisfied and is made only to simplify the exposition. In the case of the regularized
least-squares algorithm (see Example 2 below) ω(λ) = λ, γ (n) = √

n and α(η) =
log(4/η). Since α(η) > 1, we can rewrite the bound as

∥∥f λ
z − fH

∥∥ ≤ α(η)

(
1

ω(λ)γ (n)
+ A(λ)

)
, (7)
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where ω, A are assumed to be continuous, monotonically increasing functions and
A(0) = 0. The corresponding best parameter choice λo(n) gives, with probability
1 − η, the rate ∥∥f λo(n)

z − fH
∥∥ ≤ 2α(η)A

(
λo(n)

)
.

To define a parameter strategy we first consider a suitable discretization for the
possible values of the regularization parameter, that is an ordered sequence (λi)i∈N

such that the best value λo(n) falls within the considered grid. The balancing principle
estimate for λo(n) is defined via

λ+ = max

{
λi : ∥∥f λi

z − f
λj
z

∥∥ ≤ 4α(η)

ω(λj )γ (n)
, j = 0,1, . . . , i − 1

}
.

Such an estimate no longer depends on A and the reason why we can expect it to
be still sufficiently close to λo(n) is better illustrated by Fig. 1 and by the following
reasoning.

Observe that, if we take two values α,β such that α ≤ β ≤ λo(n), then with prob-
ability at least 1 − η

∥∥f α
z − f

β
z

∥∥ ≤ ∥∥f α
z − fH

∥∥ + ∥∥f
β
z − fH

∥∥
≤ α(η)

(
A(α) + 1

γ (n)ω(α)

)
+ α(η)

(
A(β) + 1

γ (n)ω(β)

)

≤ 4
α(η)

γ (n)ω(α)
. (8)

The intuition is that when such a condition is violated we are close to the intersection
point of the two curves, that is to λo(n). The above discussion is made precise in the
following.

Assumption 1 For λ ∈ (0,1] both f λ
z and fH belong to some normed space and

moreover with probability at least 1 − η

∥∥f λ
z − fH

∥∥ ≤ α(η)

(
1

ω(λ)γ (n)
+ A(λ)

)
,

where

• ω(λ) is a continuous, increasing function,
• A(λ) is a continuous, increasing function with A(0) = 0,
• ω(λ)A(λ) ≤ cλ,

and α(η) > 1, γ (n) > 0. Moreover, assume that the bound holds uniformly with re-
spect to λ, meaning that the collection of training sets for which it holds with confi-
dence 1 − η does not depend on λ.

It is easy to check that the last item in the above assumption ensures that λo(n) ≥
1/(cγ (n)), so that if we choose the first value λstart in the sequence (λi)i∈N so that
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λstart ≤ 1/(cγ (n)), the best possible parameter choice will fall within the parameter
range we consider. The last condition in the assumption requires the bound to be uni-
form with respect to λ, and is needed since the parameter choice we consider is data
dependent. This assumption is satisfied in all the examples of algorithms we consider
in the paper. In other cases, such as empirical risk minimization, it can be enforced
considering a union bound on the different regularization parameter values—see for
example [17], Chap. 18.

The following theorem shows that the value λ+, given by the balancing principle,
provides the same error estimate of λo(n) up to a constant factor.

Theorem 1 If Assumption 1 holds and moreover, and we consider a sequence of
regularization parameter values such that λstart ≤ 1/(cγ (n)) and

ω(λi+1) ≤ qω(λi), q > 1, (9)

then with probability at least 1 − η

∥∥f
λ+
z − fH

∥∥ ≤ 6qα(η)A
(
λo(n)

)
.

The above theorem shows that the balancing principle can adaptively achieve the
best possible learning rate. In its basic formulation the balancing principle requires
an extensive comparison of solutions at different values λi . In fact, the procedure can
be simplified, at the price of slightly worsening the constant in the bound. In fact, we
can take a geometric sequence

λi = λstartμ
i, with μ > 1, λstart ≤ 1

cγ (n)
(10)

and introduce the choice

λ̄ = max

{
λi : ∥∥f

λj
z − f

λj−1
z

∥∥ ≤ 4α(η)

γ (n)ω(λj−1)
, j = 1, . . . , i − 1

}
, (11)

requiring only comparison of solutions for adjacent parameter values. The next theo-
rem studies the error estimate obtained with this choice.

Theorem 2 If Assumption 1 holds and moreover and there are b > a > 1 such that
for any λ > 0,

ω(2λ)

b
≤ ω(λ) ≤ ω(2λ)

a
, (12)

then, taking a sequence of regularization parameter values as in (10), we have with
probability at least 1 − η

∥∥f λ̄
z − fH

∥∥ ≤ Cα(η)A
(
λo(n)

)

where C might depend on a, b,μ.
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We discuss some cases where the above results apply. The letter C is used to
indicate constants independent of λ and n. We first go back to the RLS algorithm and
consider error estimates in the RKHS norm.

Example 2 (Regularized Least Squares) Error estimates for the RLS algorithm are
known both for the expected risk (see Example 1, (6)) and the RKHS norm [4, 8, 35].
In this latter case with probability 1 − η

∥∥f λ
z − fH

∥∥
H ≤ C log

(
4

η

)(
1

λ
√

n
+ λr− 1

2

)
,

1

2
< r ≤ 3

2
,

(under the same assumption of Example 1). It is straightforward to check that the
above estimate satisfies the conditions needed to apply the balancing principle and
achieve the best rate in an adaptive way.

Example 3 (Spectral Regularization) More generally the RLS algorithm can be seen
as a special case of a large class of regularized kernel methods, namely spectral reg-
ularization, studied in [4] and including also L2-boosting [6, 44] and kernel principal
component regression [24, 33]. All such algorithms can be written as

f λ
z (x) =

n∑
i=1

αiK(x, xi) with α = 1

n
gλ

(
K
n

)
y,

where Kij = K(xi, xj ), α = (α1, . . . , αn) and gλ(σ ) → σ−1 as λ → 0 (see [4, 7, 15]
for details).

The prior assumption (5) can be generalized to fH = φ(LK)v,‖v‖H ≤ R (for a
large class of functions φ, including φ(σ) = σ s, s > 0), where LK is the integral
operator in (5) restricted to H. The following bound is proved in [4], with probability
at least 1 − η

∥∥f λ
z − fH

∥∥
H ≤ C log

(
4

η

)(
1

λ
√

n
+ φ(λ)

)

for any3 λ ≥ n−1/2.

Example 4 (Elastic-Net Regularization) The elastic-net algorithm proposed in [45],
is studied in [13] in the context of learning with an infinite dimensional over-
complete dictionary of features (ψγ )γ∈Γ . In this case, we let �2(Γ ) be the space
of β = (βγ )γ∈Γ such that

∑
γ∈Γ |βγ |2 < ∞ and look for an estimator of the form∑

γ∈Γ βγ ψγ . The idea is that the function of interest is sparse, meaning that many
of the coefficients in the previous expansion are zero. In this case a sparse and stable
estimator βλ

n is found by minimizing

min
β∈�2(Γ )

{
1

n

n∑
i=1

(
yi −

∑
γ∈Γ

βγ ψγ (xi)

)2

+ λ

(∑
γ∈Γ

|βγ | + ε
∑
γ∈Γ

β2
γ

)}
,

3In [4] a slightly weaker condition is considered.
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where ε,λ > 0. In this setting one is often interested in error estimates on the
coefficients since they give information on which features are most important. If
we assume the target function to have an expansion fH = ∑

γ∈Γ β∗
γ ψγ such that∑

γ∈Γ |β∗
γ | < ∞, then, for λ > 1/

√
n, it is possible to prove [13] that with probabil-

ity at least 1 − η

∥∥βλ
n − β∗∥∥

2 ≤ C log

(
4

η

)(
1

λ
√

n
+ φ(λ)

)

where ‖·‖2 is the norm in �2(Γ ). Clearly, the above bound satisfies the assumption
needed to apply the balancing principle.

Example 5 (Tikhonov Regularization with Convex Loss) The RLS algorithm can be
generalized to

min
f ∈H

{
1

n

n∑
i=1

�
(
yi, f (xi)

) + λ‖f ‖2
H

}
,

where � : Y × R → [0,∞] is a loss function which is convex in its second entry. If
we denote by f λ the minimizer of

E (f ) + λ‖f ‖2
H

then, recall that if the loss function is convex, it is also locally Lipschitz continuous
so that

E
(
f λ

z
) − E

(
f λ

) ≤ Lλ

∥∥f λ
z − f λ

∥∥
H,

where the Lipschitz constant Lλ might depend on λ. The following bound is proved
in [32] (see also [10] for a more general setting), when the outputs are bounded and
the loss is bounded at 0; with probability at least 1 − η

E
(
f λ

z
) − E (fH) ≤ C log

(
2

η

)(
Lλ

λ
√

n
+ φ(λ)

)
,

where φ(λ) = minf ∈H{E (f ) + λ‖f ‖2
H − E (fH)}. For a large number of loss func-

tions (see [32]) the constant Lλ can be explicitly computed and ω(λ) = Lλ/λ, φ

satisfy the assumptions required to apply the balancing principle.

3.2 Adaptive Learning for the Expected Risks

Our further goal is adaptation with respect to the error as measured by the expected
risk. Note that in this latter case there is no straightforward application of the balanc-
ing principle since it would require comparison of E (f

λi
z ) − E (f

λi−1
z ) and hence a

knowledge of the distribution ρ.
To deal with this situation we make two restrictions: (1) we consider regulariza-

tion algorithms f λ
z in a hypothesis space H which is a RKH space, (2) we consider

regularization algorithms based on the square loss function. We assume the space X
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to be a separable metric space and consider a RKH space such that the corresponding
reproducing kernel K : X × X → R is measurable and bounded, that is

κ = sup
x∈X

√
K(x,x). (13)

We denote by ρX the marginal probability of ρ on X, and by ρ(y|x) the conditional
probability. Since we consider the square loss (y − f (x))2, if

∫
y2ρ(x, y) < ∞, the

expected risk is a well-defined functional on the space L2(X,ρX)={f :X → R |
‖f ‖2

ρ = ∫
X

f (x)2 dρX(x) < ∞}. In this case some facts are well known [11, 23]. The
minimizer of E (f ) over L2(X,ρX) is the regression function fρ(x) = ∫

Y
y dρ(y|x)

and for f ∈ L2(X,ρX) we can write

E (f ) − E (fρ) = ‖f − fρ‖2
ρ.

Then, as we mentioned before, the application of the balancing principle is not
straightforward since we should evaluate ‖f β

z − f λ
z ‖ρ . Since both the empirical norm

‖f ‖2
ρz

= 1

n

n∑
i=1

f (xi)
2,

and the RKH space norm are known, we can consider

λρz = max

{
λi : ∥∥f λi

z − f
λj
z

∥∥2
ρz

≤ 4Ĉα(η)
√

λj

γ (n)ω(λj )
, j = 0,1, . . . , i − 1

}
,

and

λH = max

{
λi : ∥∥f λi

z − f
λj
z

∥∥
H ≤ 4α(η)

γ (n)ω(λj )
, j = 0,1, . . . , i − 1

}
.

Our main result shows that the choice

λ̂ = min{λρz , λH} (14)

allows to achieve the best error rate for the expected risk in an adaptive way. To show
this we need the following assumption.

Assumption 2 Assume that λ ≥ n−1/2 and that the following bounds hold with prob-
ability at least 1 − η:

∥∥f λ
z − fH

∥∥
ρ

≤ α(η)
√

λ

(
1√

nω(λ)
+ A(λ)

)
(15)

and
∥∥f λ

z − fH
∥∥

H ≤ α(η)

(
1√

nω(λ)
+ A(λ)

)
, (16)

where
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• √
λω(λ) is a continuous, increasing function,

• √
λA(λ) is a continuous, increasing function with A(0) = 0,

• ω(λ)A(λ) ≤ cλ,

and α(η) > max{log(2/η)1/4,1}. Moreover, assume the bound to hold uniformly with
respect to λ, meaning that the collection of training sets for which it holds with con-
fidence 1 − η does not depend on λ.

The way we wrote the estimates is no coincidence since it corresponds to how
the two error estimates are typically related (see for example [4, 35]). At the root
of this relation there is essentially the fact that the reproducing kernel Hilbert space
can be viewed as the image of L2(X,ρX) under L

−1/2
K [11]. Because of this fact,

an estimator will have different norms (that is lie in spheres with different radius) in
L2(X,ρX) and HK .

Given Assumption 2 the best parameter choice λo(n) is the same in both cases but
the rates are different, in fact we have

∥∥f λo(n)
z − fH

∥∥
ρ

≤ α(η)
√

λo(n)A
(
λo(n)

)
(17)

for the expected risk and

∥∥f λo(n)
z − fH

∥∥
H ≤ α(η)A

(
λo(n)

)
(18)

for the RKH space norm. The fact that the best possible parameter choice is the same
for both error measures is a promising indication and a possible idea would be to
recall [1] that for the RKH space norm

∣∣f (x)
∣∣ ≤ κ ‖f ‖H , ∀x ∈ X,f ∈ H

so that we can think of using the bound in the RKH space norm to bound the expected
risk and use the balancing principle as presented above. Unfortunately by doing this
we would not to match the best error rate for the expected risk, as can be seen com-
paring (17) and (18).

The following theorem is our main result and studies the property of the
choice (14).

Theorem 3 Assume that Assumption 2 holds. Consider a sequence of regularization
parameter values such that λstart ≤ 1/(c

√
n) and

ω(λi+1) ≤ qω(λi). (19)

If we choose λ̂ as in (14), then the following bound holds with probability at least
1 − η

∥∥f λ̂
z − fH

∥∥
ρ

≤ qCα(η)λo(n)A
(
λo(n)

)
,

where the value of C can be explicitly given.
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As an application of the above result we show how it allows an optimal adaptive
parameter choice for the regularized least-square algorithm in RKHS, as well as for
the class of spectral regularization algorithms studied in [4, 15]. To the best of our
knowledge the balancing principle is the first strategy that allows to achieve this result
without requiring any data splitting. A hold-out strategy is discussed in [9], where
adaptation is proved also when fρ 
= H. Recently the use of aggregation to choose
the regularization parameter for the regularized least squares has been considered
in [21]. The results in that paper apply to polynomial type of approximation rates
and require the knowledge of the spectrum asymptotic for the operator LK , which
depends on the unknown marginal distribution.

We proceed illustrating the application of the above result to the regularized least-
square algorithm.

Example 6 (Regularized Least Squares) As we previously mentioned, for the regu-
larized least-square algorithm (see Examples 1 and 2) we have with probability at
least 1 − η

E
(
f λ

z
) − E (fH) ≤ C log

(
4

η

)(
1

λn
+ λ2r

)
,

1

2
< r ≤ 1,

but also

∥∥f λ
z − fH

∥∥
H ≤ C log

(
4

η

)(
1

λ
√

n
+ λr− 1

2

)
,

1

2
< r ≤ 3

2
.

Applying the above result we have that the parameter choice (14) satisfies with prob-
ability at least 1 − η

E
(
f λ̂

z
) − E (fH) ≤ 6qC log

(
4

η

)
n− 2r

2r+1 ,
1

2
< r ≤ 1.

Example 7 (Spectral Regularization) In Example 3 we have seen that RLS is a partic-
ular instance of a class of spectral algorithms for supervised learning. For this latter
class of methods the following bound on the expected risk is known [4] to hold with
probability at least 1 − η

E
(
f λ

z
) − E (fH) ≤ C log

(
4

η

)(
1

λn
+ λφ(λ)2

)
,

where φ is a function encoding the smoothness of the target function (see Example 3
and [4] for details). Again it is easy to see that the assumptions to apply the balancing
principle hold.

We end this section with the following remark that shows how to practically com-
pute (14).

Remark 3 (Computing Balancing Principle) The proposed parameter choices can be
computed exploiting the properties of RKH spaces. In fact for f = ∑n

i=1 αiK(xi, ·)
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we have

‖f ‖2
H =

〈
n∑

i=1

αiK(xi, ·),
n∑

i=1

αiK(xi, ·)
〉

H

=
n∑

i,j=1

αiαjK(xi, xj ) = αKα,

where we used the reproducing property 〈K(x, ·),K(s, ·)〉H = K(x, s) [1]. Then we
can check that for f

β
z = ∑n

i=1 α
β
i K(xi, ·), f λ

z = ∑n
i=1 αλ

i K(xi, ·) we have

∥∥f
β
z − f λ

z

∥∥2
H = αβKαβ − 2αβKαλ + αλKαλ

= (
αβ − αλ

)
K

(
αβ − αλ

)
.

Similarly one can see that
∥∥f

β
z − f λ

z

∥∥2
ρz

= (
αβ − αλ

)
K2(αβ − αλ

)
.

4 Proofs

In this section we give the proofs of the results we previously presented. We first
prove the results when the error is measured with respect to some known norm.

4.1 Results for Known Norm

Recall that if Assumption 1 holds the best parameter choice achieves the error es-
timate (4) and it can be shown that the last condition in Assumption 1 ensures
λo(n) ≥ 1/(cγ (n)). Note that, if we now restrict our attention to some discrete se-
quence (λi)i with λstart ≤ 1/(cγ (n)), then it is easy to see that the best estimate for
λo(n) is

λ∗ = max

{
λi |A(λi) ≤ 1

ω(λi)γ (n)

}

which still depends on A. Given these observations we can give the proof of Theo-
rem 1.

Proof of Theorem 1 Note that all the inequalities in the proof are to be interpreted as
holding with probability at least 1 − η. Recall that by (8) for λ,β such that λ ≤ β ≤
λo(n) we have

∥∥f λ
z − f

β
z

∥∥ ≤ 4α(η)

ω(λ)γ (n)
.

It is easy to prove that λ∗ ≤ λ+. Indeed by definition λ∗ ≤ λo(n), and we know that,
for any λj ≤ λ∗ ≤ λo(n),

∥∥f
λj
z − f λ∗

z

∥∥ ≤ 4α(η)

ω(λj )γ (n)
,
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so that, in particular, λ∗ ≤ λ+. From the definition of λ+ and λ∗ we get

∥∥f
λ+
z − fH

∥∥ ≤ ∥∥f
λ+
z − f λ∗

z

∥∥ + ∥∥f λ∗
z − fH

∥∥
≤ 4α(η)

ω(λ∗)γ (n)
+ α(η)

(
A(λ∗) + 1

ω(λ∗)γ (n)

)

≤ 4α(η)

ω(λ∗)γ (n)
+ 2α(η)

ω(λ∗)γ (n)
≤ 6α(η)

ω(λ∗)γ (n)
. (20)

Finally to relate λ∗ and λo(n), we let λ∗ = λ� so that λ∗ = λ� ≤ λo(n) ≤ λ�+1. Since
ω(λ) is increasing, we can use (9) to get ω(λo(n)) ≤ ω(λ�+1) ≤ qω(λ�) = qω(λ∗).
The above reasoning yields

1

ω(λ∗)
≤ q

ω(λo(n))
, (21)

and if we plug the above inequality into (20), the definition of λo(n) gives

∥∥f
λ+
z − fH

∥∥ ≤ 6qα(η)
1

ω(λo(n))γ (n)
= 6qα(η)A

(
λo(n)

)

so that the theorem is proved. �

The proof of Theorem 2 is similar.

Proof of Theorem 2 The proof follows exactly the one for deterministic inverse prob-
lems though the inequalities here are to be interpreted as holding with probability at
least 1 − η. The key observation is that we can easily control the distance between
the solutions corresponding to λ∗ and λ̄. In fact if we let λ∗ = λ� and λ̄ = λm clearly
m ≥ � and we can use the definition of λ̄ to write

∥∥f λ̄
z − f λ∗

z

∥∥ ≤
m∑

j=�+1

∥∥f
λj
z − f

λj−1
z

∥∥

≤ 4α(η)
1

γ (n)

m∑
j=�+1

1

ω(λj−1)

≤ 4α(η)
1

γ (n)

m−�−1∑
j=0

1

ω(λ∗μj )
. (22)

Now for any μ > 1, α > 1 let p, s ∈ N be such that 2p ≤ μ ≤ 2p+1 and 2s ≤ α ≤
2s+1. Then using (12) we get

1

ω(αλ∗)
≤ 1

ω(2sλ∗)
≤ 1

asω(λ∗)
≤ 1

a(log2 α−1)ω(λ∗)
,

ω(λi) = ω(μλi−1) ≤ bp+1ω(λi−1) ≤ blog2 2μω(λi−1).
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The last inequality shows that (9) is satisfied with q = blog2 2μ and also

m−�−1∑
j=0

1

ω(λ∗μj )
≤ 1

ω(λ∗)
alog2 2μ

alog2 μ − 1
.

Finally we can use the above inequality and the definition of λ∗ to get

∥∥f λ̄
z − fH

∥∥ ≤ ∥∥f λ∗
z − fH

∥∥ + ∥∥f λ̄
z − f λ∗

z

∥∥

≤ 2α(η)
1

γ (n)ω(λ∗)
+ 4α(η)

alog2 2μ

alog2 μ − 1

1

γ (n)ω(λ∗)

≤ 2α(η)

(
1 + 2

alog2 2μ

alog2 μ − 1

)
blog2 2μ

γ (n)ω(λo(n))
.

The theorem is proved recalling the definition of λo(n). �

4.2 Results for the Expected Risk

In this section we prove the main result of the paper allowing adaptive regularization
for kernel-based algorithms. The following concentration result will be crucial.

Proposition 1 Assume that H is a RKH space with bounded kernel (13). For f ∈ H
we have with probability at least 1 − η

∣∣‖f ‖ρ − ‖f ‖ρz

∣∣ ≤ Cκ

(
log(2/η)

n

) 1
4 ‖f ‖H ,

and C2
κ = 2

√
2κ2.

Proof Let Kx = K(x, ·) so that, if f ∈ H, by the reproducing property we have
f (x) = 〈f,Kx〉H. Then we can write

‖f ‖2
ρ =

∫
X

〈f,Kx〉H 〈f,Kx〉H dρX(x)

=
〈
f,

∫
X

〈f,Kx〉H Kx dρX(x)

〉
H

=: 〈f,Tf 〉H .

Reasoning in the same way we get

‖f ‖2
ρz

= 1

n

n∑
i=1

〈f,Kxi
〉H〈f,Kxi

〉H

=
〈
f,

1

n

n∑
i=1

〈f,Kxi
〉HKxi

〉

H
=: 〈f,Txf 〉H .
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The operators T ,Tx can be shown to be positive and of Hilbert–Schmidt type [8].
From the above reasoning it follows that ∀f ∈ H

∣∣‖f ‖ρ − ‖f ‖ρz

∣∣ ≤ √‖T − Tx‖‖f ‖H . (23)

The quantity ‖T − Tx‖ have been studied in [4, 8] where the following bound is
proved

‖T − Tx‖ ≤ (log(2/η))1/2C2
κ√

n
.

The theorem is proved plugging the above estimate into (23). �

We add the following remark.

Remark 4 Using the Hoeffding inequality one can show that for |f (x)| < C the fol-
lowing estimate holds true:

P
(∣∣‖f ‖ρ − ‖f ‖ρz

∣∣ > ε
) ≤ 2e

− nε2‖f ‖2
ρ

2C4 ,

that is we have with probability at least 1 − η,

∣∣‖f ‖ρ − ‖f ‖ρz

∣∣ ≤ √
2C2

(
log(2/η)

n

) 1
2 ‖f ‖−1

ρ . (24)

Comparing the above result to Proposition 1 we see that one has the order n−1/2

versus n−1/4. It is hence tempting to use this estimate instead of that in Proposition 1
to avoid dealing with RKHS. The point is that we need to estimate |‖f ‖ρ − ‖f ‖ρz |
for f = fH − f λ

z , and it is expected that the norm ‖f ‖ρ is rather small, say

‖f ‖ρ = ∥∥fH − f λ
z

∥∥
ρ

≤ cn− r
2r+1 , r >

1

2
,

as in Example 1. Note that for such f the bound (24) is too rough. Namely,

√
2C2

(
log(2/η)

n

) 1
2 ‖f ‖−1

ρ = O(n
− 1

2(2r+1) ) � n− 1
4 .

The simple application of the Hoeffding inequality is then not enough to prove opti-
mal learning rates and in the sequel we will use the bound given in Proposition 1. We
are grateful to an anonymous referee who inspired us to make this remark.

Assumption 2 and Proposition 1 immediately yield the following result.

Corollary 1 If Assumption 2 holds then with probability at least 1 − η

∥∥f λ
z − fH

∥∥
ρz

≤ α(η)Ĉ
√

λ

(
1

ω(λ)
√

n
+ A(λ)

)
,

with Ĉ = 1 + α(η)Cκ .
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Proof From Proposition 1

∥∥f λ
z − fH

∥∥
ρz

≤∥∥f λ
z − fH

∥∥
ρ

+ α(η)Cκ

n1/4

∥∥f λ
z − fH

∥∥
H,

so that the proof follows substituting (15), (16) into the above inequality and noting
that n−1/4 ≤ √

λ since λ ≥ n−1/2. �

Given the above results we can prove Theorem 3.

Proof of Theorem 3 We first note a few useful facts. Let �(λ) = ω(λ)A(λ). First,
from Assumption 2, item 3, if we take λ = λo(n) we have

�
(
λo(n)

) ≤ cλo(n) ⇒ 1√
n

≤ cλo(n) ⇒ 1

n1/4
≤ √

c
√

λo(n). (25)

Second, noting that (19) implies ω(λi+1)/
√

λi+1 ≤ qω(λi)/
√

λi and recalling the
reasoning to get (21), we have

√
λ∗

ω(λ∗)
≤ q

√
λo(n)

ω(λo(n))
.

This immediately yields

1

ω(λρz)
≤ q

ω(λo(n))
, (26)

since λρz ≥ λ∗, and
√

λH
ω(λH)

≤ q
√

λo(n)

ω(λo(n))
, (27)

since λH ≥ λ∗ and
√

λ/ω(λ) is a decreasing function.
We now consider the two cases: λρz < λH and λρz > λH.
Case 1. First, consider the case λ̂ = λρz < λH. From Proposition 1 we have

∥∥f λ̂
z − fH

∥∥
ρ

≤ ∥∥f
λρz
z − fH

∥∥
ρz

+ α(η)Cκ

n1/4

∥∥f
λρz
z − fH

∥∥
H

≤ ∥∥f
λρz
z − fH

∥∥
ρz

+ α(η)Cκ

n1/4

∥∥f
λρz
z − f λH

z

∥∥
H

+ α(η)Cκ

n1/4

∥∥f λH
z − fH

∥∥
H . (28)

We consider the various terms separately. Applying Theorem 1 and Corollary 1 we
get

∥∥f
λρz
z − fH

∥∥
ρz

≤ 6qα(η)Ĉ
√

λo(n)A
(
λo(n)

)
. (29)

Applying again Theorem 1 and with the aid of (25) we obtain

α(η)Cκ

n1/4

∥∥f λH
z − fH

∥∥
H ≤ 6qα(η)2cCκ

√
λo(n)A

(
λo(n)

)
. (30)
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Recalling the definition of λH we also have

∥∥f
λρz
z − f λH

z

∥∥
H ≤ 4α(η)√

nω(λρz)
. (31)

We can now use (25), (26) and the definition of λo(n) to get

α(η)Cκ

n1/4

∥∥f
λρz
z − f λH

z

∥∥
H ≤ 4qα(η)2cCκ

√
λo(n)A

(
λo(n)

)
. (32)

If we now substitute (29), (30), (32) into (28) we get

∥∥f λ̂
z − fH

∥∥
ρ

≤ qα(η)C
√

λo(n)A
(
λo(n)

)
,

with C = 6Ĉ + 10α(η)cCκ .
Case 2. Consider the case λ̂ = λH < λρz . From Proposition 1 we have

∥∥f λ̂
z − fH

∥∥
ρ

≤ ∥∥f λH
z − fH

∥∥
ρz

+ α(η)Cκ

n1/4

∥∥f λH
z − fH

∥∥
H

≤ ∥∥f λH
z − f

λρz
z

∥∥
ρz

+ ∥∥f
λρz
z − fH

∥∥
ρz

+ α(η)Cκ

n1/4

∥∥f λH
z − fH

∥∥
H. (33)

Applying Theorem 1 and using (25) we immediately get

α(η)Cκ

n1/4

∥∥f λH
z − fH

∥∥
H ≤ 6qcα(η)2Cκ

√
λo(n)A

(
λo(n)

)
. (34)

Another straightforward application of Theorem 1 and Corollary 1 gives

∥∥f
λρz
z − fH

∥∥
ρz

≤ 6qα(η)Ĉ
√

λo(n)A
(
λo(n)

)
. (35)

Finally we have from the definition of λρz

∥∥f λH
z − f

λρz
z

∥∥
ρz

≤ 4α(η)Ĉ
√

λH√
nω(λH)

, (36)

so that using (27), (25) and the definition of λo(n) we can write

∥∥f λH
z − f

λρz
z

∥∥
ρz

≤ 4α(η)qĈ
√

λo(n)A
(
λo(n)

)
. (37)

The proof is finished by substituting (34), (35) and (37) into (33) to get

∥∥f λ̂
z − fH

∥∥
ρ

≤ α(η)qC
√

λo(n)A
(
λo(n)

)
,

where C = 6α(η)Cκ + 10Ĉ. �
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5 Numerical Experiments

In this section we consider some numerical experiments discussing how the balancing
principle can be approximatively implemented in the presence of a very small sample.
When the number of samples is very small, as is often the case in practice, we observe
that one cannot completely rely on the theoretical constructions since the bounds are
conservative and tend to select a large parameter which will oversmooth the estimator.

For our numerical experiments, besides the standard regularized least-square al-
gorithm, we consider also the more complex situation when the kernel is not fixed
in advance but is found within the regularization procedure. We first give a brief
summary of this latter approach. Indeed, once a regularized kernel-based learning
method is applied, two questions should be answered. One of them is how to choose
a regularization parameter. The balancing principle discussed in the previous sections
provides an answer to this question. Another question is how to choose the kernel,
since in several practically important applications a kernel is not given a priori. This
question is much less studied. It has been discussed recently in [29], where it has
been suggested to select a kernel K = K(λ) from some set K such that

K(λ) = arg min{Qz(K,λ),K ∈ K}, (38)

where

Qz(K,λ) = min
f ∈HK

(
1

n

n∑
i=1

(
yi − f (xi)

)2 + λ‖f ‖2
HK

)
,

and HK is the RKH space generated by K . By definition, the selected kernel K =
K(λ) is λ-dependent, so that this kernel choice rule is only applicable for an a priori
given regularization parameter λ.
At the same time, under rather general assumptions [4] the best in the model fHK

∈
HK can be approximated by minimizers f λ

z ∈ HK of Qz(K,λ) in such a way that
Assumption 2 is satisfied. Then in accordance with Theorem 3 the best parameter
choice rule λ = λ̂ = λ̂(K) allows for an accuracy which is only by a constant factor
worse than the optimal one for fixed K ∈ K.

Let Λ: R+ → R+ be the function such that its value at point λ is the best parameter
choice λ̂ = λ̂(K(λ)) for estimators based on the kernel K(λ) ∈ K given by (38). If
λ̊ is a fixed point of Λ, i.e., λ̊ = λ̂(K(λ̊)), then K(λ̊) can be seen as the kernel of
optimal choice in the sense of [29], since it satisfies the criterion Qz(K,λ) → min
for the regularization parameter λ = λ̊, which is order-optimal for this kernel.

The existence of a fixed point λ = λ̊ depends on the set K, and deserves consid-
eration in the future. In the computational tests below we find such a fixed point nu-
merically for an academic example from [29]. At this point it is worth noting that the
balancing principle can be capacity independent in the sense that it does not require
a knowledge of the spectral properties of the underlying kernel K . This feature of the
balancing principle makes its combination with the rule (38) numerically feasible.

To simplify the numerical realization of the balancing principle and especially in
the presence of very small samples, one can approximate the values λρz , λH using
the well-known quasi-optimality criterion [37]. As observed in [30] this criterion can
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Fig. 2 (Color online) The
values of σρz (j) (blue dots) and
σH(j) (green crosses) for
z = z21

Fig. 3 (Color online) The
values of σρz (j) (blue dots) and
σH(j) (green crosses) for
z = z51

be seen as a heuristic counterpart of the parameter choice rule λ = λ̄. It also uses the

norms σ(j) = ‖f λj
z − f

λj−1
z ‖, λj = λstart · μj , and selects λq−0 = λl such that for

any j = 1,2, . . . ,N , σ(j) ≥ σ(l), i.e.,

l = arg min
{
σ(j), j = 1,2, . . . ,N

}
.

In our experiments we approximate λρz and λH by

λq−0
ρz

= λl, l = arg min
{
σρz(j) = ∥∥f

λj
z − f

λj−1
z

∥∥
ρz

, j = 1,2, . . . ,N
}
,

and

λ
q−0
H = λm, m = arg min

{
σH(j) = ∥∥f

λj
z − f

λj−1
z

∥∥
H, j = 1,2, . . . ,N

}
,

respectively. Then in accordance with (14) we choose a regularization parameter

λ̂ = min
{
λq−0

ρz
, λ

q−0
H

}
. (39)
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Fig. 4 (Color online) The

estimator f λ̂
z (red line) and the

target function fρ (green line)
for λ̂ = 1.5 × 10−6 and training
set z = z21 (blue dots)

Fig. 5 (Color online) The

estimator f λ̂
z (red line) and the

target function fρ (green line)
for λ̂ = 0.0033 and training set
z = z51 (blue dots)

As in [29], we consider a target function

fρ(x) = 1

10

(
x + 2

(
e−8( 4

3 π−x)2 − e−8( π
2 −x)2 − e−8( 3

2 π−x)2))
, x ∈ [0,2π], (40)

and a training set z = zn = {(xi, yi)}ni=1, where xi = 2π(i−1)
n−1 , yi = fρ(xi)+ ζi , and ζi

are random variables uniformly sampled in the interval [−0.02,0.02].
In our first experiment we test the approximate version (39) of the balancing

principle using the a priori information that the target function (40) belongs to a
RKH space H = HK generated by the kernel K(x, t) = Kρ(x, t) = xt + e−8(t−x)2

,
t, x ∈ [0,2π].

Figures 2 and 3 display the values σρz(j), σH(j) calculated for the regularized

least-squares estimators f
λj
z , which are constructed using the kernel Kρ for the train-

ing sets z = z21 and z = z51 respectively. Here and in the next experiment

λj ∈ {
λstart · μj , j = 1,2, . . . ,20

}
, λstart = 10−6,μ = 1.5.

It is instructive to see that the sequences σρz(j), σH(j), j = 1,2, . . . ,20, exhibit
different behavior for the training sets z21 and z51. At the same time, they attain their
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Fig. 6 (Color online) The target
function fρ (green line) and its

estimator f λ̊
z (red line) based on

the adaptively chosen kernel

K(λ̊;x, t) = xt + e−10(x−t)2
,

λ̊ = 0.0014, and training set
z = z21 (blue dots)

minimal values at the same j . Therefore, in accordance with the rule (39) we take
λ̂ = λ

q−0
ρz = λ

q−0
H = 1.5 × 10−6 in the case of z = z21, while for z = z51 λ̂ = λ

q−0
ρz =

λ
q−0
H = 0.0033.

Figures 4 and 5 show that for the chosen values of the parameters the estimator

f λ̂
z provides an accurate reconstruction of the target function.

In our second experiment we do not use a priori knowledge of the space HK , K =
Kρ , containing the target function (40). Instead, we choose a kernel K adaptively
from the set

K = {
K(x, t) = (xt)β + e−γ (x−t)2

, β ∈ {0.5,1, . . . ,4}, γ ∈ {1,2, . . . ,10}},
trying to find a fixed point of the function Λ: λ → λ̂(K(λ)), where λ̂(K(λ)) is the
number (39) calculated for the kernel K(λ), which minimizes Qz(K,λ) for z = z21,
over the set K.

In the experiment we take λ(s) ∈ {λj }20
j=1 and find the minimizer K(λ(s)) ∈ K by

a simple complete search over the finite set K. Then the next value λ(s+1) ∈ {λj }20
j=1

is defined as the number (39) calculated for the estimators f
λj
z based on the kernel

K(λ(s)). This iterative procedure terminates when |λ(s+1) − λ(s)| ≤ 10−4. It gives
us the required approximate fixed point λ̊ = λ18 ≈ 0.0014 and the corresponding
kernel K(λ̊) = K(λ̊;x, t) = xt + e−10(x−t)2

, which is a good approximation for the
ideal kernel Kρ(x, t). The estimator f λ̊

z based on the kernel K(λ̊) provides a good
reconstruction of the target function (40), as can be seen in Fig. 6.

The presented numerical experiments demonstrate the reliability of the balanc-
ing principle, and show that it can be used also in learning the kernel function via
regularization.
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