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Abstract

In batch learning, stability together with existence and uniqueness of the solution corresponds
to well-posedness of Empirical Risk Minimization (ERM) methods; recently, it was proved
that CVloo stability is necessary and sufficient for generalization and consistency of ERM
([9]). In this note, we introduce CVon stability, which plays a similar role in online learning.
We show that stochastic gradient descent (SDG) with the usual hypotheses is CVon stable
and we then discuss the implications of CVon stability for convergence of SGD.
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1 Learning, Generalization and Stability

In this section we collect some basic definition and facts.

1.1 Basic Setting

Let Z be a probability space with a measure ρ. A training set Sn is an i.i.d. sample zi, i,=
0, . . . , n − 1 from ρ. Assume that a hypotheses space H is given. We typically assume H to
be a Hilbert space and sometimes a p-dimensional Hilbert Space, in which case, without loss of
generality, we identify elements in H with p-dimensional vectors and H with R

p. A loss function
is a map V : H× Z → R+. Moreover we assume that

I(f) = Ez V (f, z),

exists and is finite for f ∈ H. We consider the problem of finding a minimum of I(f) in H. In
particular, we restrict ourselves to finding a minimizer of I(f) in a closed subset K of H (note
that we can of course have K = H). We denote this minimizer by fK so that

I(fK) = min
f∈K

I(f).
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Note that in general, existence (and uniqueness) of a minimizer is not guaranteed unless some
further assumptions are specified.

Example 1. An example of the above set is supervised learning. In this case X is usually a subset
of Rd and Y = [0, 1]. There is a Borel probability measure ρ on Z = X × Y . and Sn is an i.i.d.
sample zi = (xi, yi), i,= 0, . . . , n− 1 from ρ. The hypotheses space H is a space of functions from
X to Y and a typical example of loss functions is the square loss (y − f(x))2.

1.2 Batch and Online Learning Algorithms

A batch learning algorithm A maps a training set to a function in the hypotheses space, that is

fn = A(Sn) ∈ H,

and is typically assumed to be symmetric, that is, invariant to permutations in the training set.
An online learning algorithm is defined recursively as f0 = 0 and

fn+1 = A(fn, zn).

A weaker notion of an online algorithm is f0 = 0 and fn+1 = A(fn, Sn+1). The former definition
gives a memory-less algorithm, while the latter keeps memory of the past (see [5]). Clearly, the
algorithm obtained from either of these two procedures will not in general be symmetric.

Example 2 (ERM). The prototype example of batch learning algorithm is empirical risk mini-
mization, defined by the variational problem

min
f∈H

In(f),

where In(f) = En V (f, z), En being the empirical average on the sample, and H is typically assumed
to be a proper, closed subspace of Rp, for example a ball or the convex hull of some given finite set
of vectors.

Example 3 (SGD). The prototype example of online learning algorithm is stochastic gradient
descent, defined by the recursion

fn+1 = ΠK(fn − γn∇V (fn, zn)), (1)

where zn is fixed, ∇V (fn, zn) is the gradient of the loss with respect to f at fn, and γn is a
suitable decreasing sequence. Here K is assumed to be a closed subset of H and ΠK : H → K the
corresponding projection. Note that if K is convex then ΠK is a contraction, i.e. ‖ΠK‖ ≤ 1 and
moreover if K = H then ΠK = I.
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1.3 Generalization and Consistency

In this section we discuss several ways of formalizing the concept of generalization of a learning
algorithm. We say that an algorithm is weakly consistent if we have convergence of the risks in
probability, that is for all ǫ > 0,

lim
n→∞

P(I(fn)− I(fK) > ǫ) = 0, (2)

and that it is strongly consistent if convergence holds almost surely, that is

P

(

lim
n→∞

I(fn)− I(fK) = 0
)

= 1.

A different notion of consistency, typically considered in statistics, is given by convergence in
expectation

lim
n→∞

E[I(fn)− I(fK)] = 0.

Note that, in the above equations, probability and expectations are with respect to the sample Sn.
We add three remarks.

Remark 1. A more general requirement than those described above is obtained by replacing I(fK)
by inff∈H I(f). Note that in this latter case no extra assumptions are needed.

Remark 2. Yet a more general requirement would be obtained by replacing I(fK) by inff∈F I(f), F
being the largest space such that I(f) is defined. An algorithm having such a consistency property
is called universal.

Remark 3. We note that, following [1] the convergence (2) corresponds to the definition of learn-
ability of the class H.

1.3.1 Other Measures of Generalization.

Note that alternatively one could measure the error with respect to the norm in H, that is
‖fn − fK‖, for example

lim
n→∞

P(‖fn − fK‖ > ǫ) = 0. (3)

A different requirement is to have convergence in the form

lim
n→∞

P(|In(fn)− I(fn)| > ǫ) = 0. (4)

Note that for both the above error measures one can consider different notions of convergence
(almost surely, in expectation) as well convergence rates, hence finite sample bounds.
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For certain algorithms, most notably ERM, under mild assumptions on the loss functions, the
convergence (4) implies weak consistency1. For general algorithms there is no straightforward
connection between (4) and consistency (2).

Convergence (3) is typically stronger than (2), in particular this can be seen if the loss satisfies
the Lipschitz condition

|V (f, z)− V (f ′, z)| ≤ L ‖f − f ′‖ , L > 0, (5)

for all f, f ′ ∈ H and z ∈ Z, but also for other loss function which do not satisfy (5) such as the
square loss.

1.4 Stability and Generalization

Different notions of stability are sufficient to imply consistency results as well as finite sample
bounds.

A strong form of stability is uniform stability

sup
z∈Z

sup
z1,...,zn

sup
z′∈Z

|V (fn, z)− V (fn,z′, z)| ≤ βn

where fn,z′ is the function returned by an algorithm if we replace the i-th point in Sn by z′ and βn

is a decreasing function of n.
Bousquet and Eliseef prove that the above condition, for algorithms which are symmetric,

gives exponential tail inequalities on I(fn) − In(fn) meaning that we have δ(ǫ, n) = e−Cǫ2n for
some constant C [2]. Furthermore, it was shown in [10] that ERM with a strongly convex loss
function is always uniformly stable. Weaker requirements can be defined by replacing one or more
supremums with expectation or statements in probability; exponential inequalities will in general
be replaced by weaker concentration. A thorough discussion and a list of relevant references can
be found in [6, 7]. Notice that the notion of CVloo stability introduced there is necessary and
sufficient for generalization and consistency of ERM ([9]) in the batch setting of classification and
regression. This is the main motivation for introducing the very similar notion of CVon stability
for the online setting in the next section2-

2 Stability and SGD

Here we focus on online learning and in particular on SGD and discuss the role played by the
following definition of stability, that we call CVon stability

1 In fact for ERM

P(I(fn)− I(fK) > ǫ) = P(I(fn)− In(fn) + In(fn)− In(fK) + In(fK)− I(fK) > ǫ)

≤ P(I(fn)− In(fn) > ǫ) + P(In(fn)− In(fK) > ǫ) + P(In(fK)− I(fK) > ǫ)

The first term goes to zero because of (4), the second term has probability zero since fn minimizes In, the third
term goes to zero if V (fK , z) is a well behaved random variable (for example if the loss is bounded but also under
weaker moment/tails conditions).

2Thus for the setting of batch classification and regression it is not necessary (S. Shalev-Schwartz, pers. comm.)
to use the framework of [8]).
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Definition 2.1. We say that an online algorithm is CVon stable with rate βn if for n > N we have

− βn ≤ Ezn[V (fn+1, zn)− V (fn, zn)|Sn] < 0, (6)

where Sn = z0, . . . , zn−1 and βn ≥ 0 goes to zero with n.

The definition above is of course equivalent to

0 < Ezn [V (fn, zn)− V (fn+1, zn)|Sn] ≤ βn. (7)

In particular, we assume H to be a p-dimensional Hilbert Space and V (·, z) to be convex and
twice differentiable in the first argument for all values of z. We discuss the stability property of
(1) when K is a closed, convex subset; in particular, we focus on the case when we can drop the
projection so that

fn+1 = fn − γn∇V (fn, zn). (8)

2.1 Setting and Preliminary Facts

We recall the following standard result, see [4] and references therein for a proof.

Theorem 1. Assume that,

• There exists fK ∈ K, such that ∇I(fK) = 0, and for all f ∈ H, 〈f − fK ,∇I(f)〉 > 0.

•
∑

n γn = ∞,
∑

n γ
2
n < ∞.

• There exists D > 0, such that for all fn ∈ H,

Ezn [‖∇V (fn, z)‖
2 |Sn] ≤ D(1 + ‖fn − fK‖

2). (9)

Then,
P( lim

n→∞
‖fn − fK‖ = 0) = 1.

The following result will be also useful.

Lemma 1. Under the same assumptions of Theorem 1, if fK belongs to the interior of K, then
there exists N > 0 such that for n > N , fn ∈ K so that the projections of (1) are not needed and
the fn are given by fn+1 = fn − γn∇V (fn, zn).

2.1.1 Stability of SGD

Throughout this section we assume that

〈f,H(V (f, z))f〉 ≥ 0 ‖H(V (f, z))‖ ≤ M < ∞, (10)

for any f ∈ H and z ∈ Z; H(V (f, z)) is the Hessian of V .
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Theorem 2. Under the same assumption of Theorem 1, there exists N such that for n > N , SGD
satisfies CVon with βn = Cγn, where C is a universal constant.

Proof. Note that from Taylor’s formula,

[V (fn+1, zn)− V (fn, zn)] = 〈fn+1 − fn,∇V (fn, zn)〉+ 1/2 〈fn+1 − fn, H(V (f, zn))(fn+1 − fn)〉 ,(11)

with f = αfn + (1 − α)fn+1 for 0 ≤ α ≤ 1. We can use the definition of SGD and Lemma 1 to
show there exists N such that for n > N , fn+1 − fn = γnV (fn, zn). Hence changing signs in (11)
and taking the expectation w.r.t. zn conditioned over Sn = z0, . . . , zn−1, we get

Ezn[V (fn, zn)− V (fn+1, zn)|Sn] =

γn Ezn[‖∇V (fn, zn)‖
2 |Sn] + 1/2γ2

nEzn[〈∇V (fn, zn), H(V (f, zn))∇fV (fn, zn)〉 |Sn]. (12)

The above quantity is clearly non negative, in particular the last term is non negative because of
(10). Using (9) and (10) we get

Ezn [V (fn, zn)− V (fn+1, zn)|Sn] = (γn + 1/2γ2
nM)D(1 + Ezn[‖fn − fK‖ |Sn]) ≤ Cγn,

if n is large enough.

A partial converse result is given by the following theorem.

Theorem 3. Assume that,

• There exists fK ∈ K, such that ∇I(fK) = 0, and for all f ∈ H, 〈f − fK ,∇I(f)〉 > 0.

•
∑

n γn = ∞,
∑

n γ
2
n < ∞.

• There exists C,N > 0, such that for all n > N , (7) holds with βn = Cγn.

Then,

P

(

lim
n→∞

‖fn − fK‖ = 0
)

= 1. (13)

Proof. Note that from (11) we also have

Ezn [V (fn+1, zn)− V (fn, zn)|Sn] =

−γn Ezn[‖∇V (fn, zn)‖
2 |Sn] + 1/2γ2

n Ezn [〈∇V (fn, zn), H(V (f, zn))∇fV (fn, zn)〉 |Sn].

so that using the stability assumption and (10) we obtain,

−βn ≤ (1/2γ2
n − γn)Ezn[‖∇V (fn, zn)‖

2 |Sn]

that is,

Ezn[‖∇V (fn, zn)‖
2 |Sn] ≤

βn

(γn −M/2γ2
n)

=
Cγn

(γn −M/2γ2
n)
.
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From Lemma 1 for n large enough we obtain

‖fn+1 − fK‖
2 ≤ ‖fn − γn∇V (fn, zn)− fK‖

2

≤ ‖fn − fK‖
2 + γ2

n ‖∇V (fn, zn)‖
2 − 2γn 〈fn − fK ,∇V (fn, zn)〉

so that taking the expectation w.r.t. zn conditioned to Sn and using the assumptions, we write

Ezn[‖fn+1 − fK‖
2 |Sn] ≤ ‖fn − fK‖

2 + γ2
n Ezn[‖∇V (fn, zn)‖

2 |Sn]− 2γn 〈fn − fK ,Ezn [∇V (fn, zn)|Sn]〉

≤ ‖fn − fK‖
2 + γ2

n

Dγn
(γn −M/2γ2

n)
− 2γn 〈fn − fK ,∇I(fn)〉 ,

since Ezn [∇V (fn, zn)|Sn] = ∇I(fn). The series
∑

n γ
2
n

Dγn
(γn−M/2γ2

n
)
converges and the last inner

product is positive by assumption, so that the Robbins-Siegmund’s theorem implies (13) and the
theorem is proved.

A Remarks: assumptions

• The assumptions will be satisfied if the loss is convex (and twice differentiable) and H is
compact. In fact, a convex function is always locally Lipschitz so that if we restrict H to be
a compact set, V satisfies (5) for

L = sup
f∈H,z∈Z

‖∇V (f, z))‖ < ∞.

Similarly since V is twice differentiable and convex, we have that the Hessian H(V (f, z)) of
V at any f ∈ H and z ∈ Z is identified with a bounded, positive semi-definite matrix, that
is

〈f,H(V (f, z))f 〉 ≥ 0 ‖H(V (f, z))‖ ≤ 1 < ∞,

for any f ∈ H and z ∈ Z, where for the sake of simplicity we took the bound on the Hessian
to be 1.

• The gradient in the SGD update rule can be replaced by a stochastic subgradient with little
changes in the theorems.

B Learning Rates, Finite Sample Bounds and Complexity

B.1 Connections Between Different Notions of Convergence.

It is known that both convergence in expectation and strong convergence imply weak convergence.
On the other hand if we have weak consistency and

∞
∑

n=1

P(I(fn)− I(fK) > ǫ) < ∞

for all ǫ > 0, then weak consistency implies strong consistency by the Borel-Cantelli lemma.
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B.2 Rates and Finite Sample Bounds.

A stronger result is weak convergence with a rate, that is

P(I(fn)− I(fK) > ǫ) ≥ δ(n, ǫ),

where δ(n, ǫ) decreases in n for all ǫ > 0. We make two observations. First, one can see that
the Borel-Cantelli lemma imposes a rate on the decay of δ(n, ǫ). Second, typically δ = δ(n, ǫ) is
invertible in ǫ so that we can write the above result as a finite sample bound

P(I(fn)− I(fK) ≤ ǫ(n, δ)) ≥ 1− δ.

B.3 Complexity and Generalization

We say that a class of real valued functions F on Z is uniform Glivenko-Cantelli if the following
limit exists

lim
n→∞

P

(

sup
F∈F

|En(F )− E(F )| > ǫ

)

= 0.

for all ǫ > 0. If we consider the class of functions induced by V and H, that is F (·) = V (f, ·),
f ∈ H, the above properties can be written as

lim
n→∞

P

(

sup
f∈H

|In(f)− I(f)| > ǫ

)

= 0. (14)

Clearly the above property implies (4), hence consistency of ERM if fH exists and under mild
assumption on the loss – see previous footnote.

It is well known that UGC classes can be completely characterized by suitable capacity/complexity
measures of H. In particular a class of binary valued functions is UGC if and only if the VC-
dimension is finite. Similarly a class of bounded functions is UGC if and only if the fat- shattering
dimension is finite. See [1] and reference therein.

Finite complexity of H is hence a sufficient condition for the consistency of ERM .

B.4 Necessary Conditions

One natural question is weather the above conditions are also necessary for consistency of ERM
in the sense of (2), or in other words if consistency of ERM on H implies that H is UGC class.

An argument in this direction is given by Vapnik which call the result the key theorem in
learning (together with the converse direction). Vapnik argues that (2) must be replaced by a much
stronger notion of convergence essentially holding if we replace H with Hγ = {f ∈ H | I(f) ≥ γ},
for all γ.

Another result in this direction is given without proof in [1].
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B.5 Robbins Siegmund’s Lemma

We use the stochastic approximation framework described by Duflo ([3], pp 6-15).
We assume a sequence of data zi defined by a probability space Ω, A, P and a filtration F =

(F)n∈N where Fn is a σ-field and Fn ∈ Fn+1. In addition a sequence Xn of measurable functions
from Ω, A to another measurable space is defined to be adapted to F if for all n, Xn is Fn-
measurable.

Definition Suppose that X = (Xn) is a sequence of random variables adapted to the filtration
F. X is a supermartingale if it is integrable (see [3]) and if

E[Xn+1|Fn] ≤ Xn

The following is a key theorem ([3]).

Theorem B.1. (Robbins-Siegmund) Let (Ω,F , P ) be a probability space. Let (Vn), (βn), (χn), (ηn)
be finite non-negative Fn-mesurable random variables, where F1 ⊂ · · · ⊂ Fn ⊂ · · · is a sequence
of sub-σ-algebras of F . Suppose that (Vn), (βn), (χn), (ηn) are four positive sequences adapted to
F and that

E[Vn+1|Fn] ≤ Vn(1 + βn) + χn − ηn.

Then if
∑

βn < ∞ and
∑

χn < ∞, almost surely (Vn) converges to a finite random variable
and the series

∑

ηn converges.

We provide a short proof of a special case of the theorem.

Theorem B.2. Suppose that (Vn) and (ηn) are positive sequences adapted to F and that

E[Vn+1 | Fn] ≤ Vn − ηn.

Then almost surely (Vn) converges to a finite random variable and the series
∑

ηn converges.

Proof

Let Yn = Vn +
∑n−1

k=1 ηk. Then we have

E[Yn+1 | Fn] = E[Vn+1 | Fn] +
n

∑

k=1

E[ηk | Fn] ≤ Vn − ηn +
n

∑

k=1

ηk = Yn.

So (Yn) is a supermartingale, and because (Vn) and (ηn) are positive sequences, (Yn) is also
bounded from below by 0, which implies it converges almost surely. It follows that both (Vn) and
∑

ηn converge.
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