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ABSTRACT. I argue that the sample complexity of (biological, feedforward) object recognition is
mostly due to geometric image transformations and conjecture that a main goal of the feedfor-
ward path in the ventral stream - from V1, V2, V4 and to IT - is to learn-and-discount image
transformations.

In the first part of the paper I describe a class of simple and biologically plausible memory-
based modules that learn transformations from unsupervised visual experience. The main the-
orems show that these modules provide (for every object) a signature which is invariant to local
affine transformations and approximately invariant for other transformations. I also prove that,
in a broad class of hierarchical architectures, signatures remain invariant from layer to layer. The
identification of these memory-based modules with complex (and simple) cells in visual areas
leads to a theory of invariant recognition for the ventral stream.

In the second part, I outline a theory about hierarchical architectures that can learn invari-
ance to transformations. I show that the memory complexity of learning affine transformations
is drastically reduced in a hierarchical architecture that factorizes transformations in terms of the
subgroup of translations and the subgroups of rotations and scalings. I then show how transla-
tions may be automatically selected as the only learnable transformations during development by
enforcing small apertures — eg small receptive fields — in the first layer.

In a third part I show that the transformations represented in each area can be optimized in
terms of storage and robustness, as a consequence determining the tuning of the neurons in the
area, rather independently (under normal conditions) of the statistics of natural images. I describe
a model of learning that can be proved to have this property, linking in an elegant way the spectral
properties of the signatures with the tuning of receptive fields in different areas.

A surprising implication of these theoretical results is that the computational goals and some
of the tuning properties of cells in the ventral stream may follow from symmetry properties (in the
sense of physics) of the visual world through a process of unsupervised correlational learning,
based on Hebbian synapses. In particular, simple and complex cells do not directly care about
oriented bars: their tuning is a side effect of their role in translation invariance. Across the whole
ventral stream the preferred features reported for neurons in different areas are only a symptom
of the invariances computed and represented.

The results of each of the three parts stand on their own independently of each other. Together
this theory-in-fieri makes several broad predictions, some of which are:

e invariance to small translations is the main operation of V1;

e invariance to larger translations and small local scalings and rotations is the main character-

istic of V2 and V4;

o class-specific transformations are learned and represented at the top of the ventral stream hi-
erarchy; thus class-specific modules — such as faces, places and possibly body areas — should
exist in IT;

o each cell’s tuning properties are shaped by visual experience of image transformations dur-
ing developmental and adult plasticity;

o the type of transformations that are learned from visual experience depend on the size of the
receptive fields and thus on the area (layer in the models) — assuming that the size increases
with layers;

o the mix of transformations learned in each area influences the tuning properties of the cells
— oriented bars in V1+V2, radial and spiral patterns in V4 up to class specific tuning in AIT
(eg face tuned cells);

o features must be discriminative and invariant: invariance to specific transformations is the
primary determinant of the tuning of cortical neurons rather than statistics of natural images.

e homeostatic control of synaptic weights during development is required for hebbian synapses.

e motion is key in development and evolution;

e invariance to small transformations in early visual areas may underly stability of visual per-
ception (suggested by Stu Geman);

The theory is broadly consistent with the current version of HMAX. It explains it and extends it
in terms of unsupervised learning, a broader class of transformation invariance and higher level
modules. The goal of this paper is to sketch a comprehesive theory with little regard for math-
ematical niceties. If the theory turns out to be useful there will be scope for deep mathematics,
ranging from group representation tools to wavelet theory to dynamics of learning.
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1. INTRODUCTION

The ventral stream is widely believed to have a key role in the task of object recognition.
A significant body of data is available about the anatomy and the physiology of neurons in
the different visual areas. Feedforward hierarchical models (see [25-28] and references therein,
see also section 7.1), which are faithful to the physiology and the anatomy, summarize several
of the physiological properties, are consistent with biophysics of cortical neurons and achieve
good performance in some object recognition tasks. However, despite the empirical and the
modeling advances the ventral stream is still a puzzle: until now we do not have a broad the-
oretical understanding of the main aspects of its function and of how the function informs the
architecture. The theory sketched here is an attempt to solve the puzzle. It can be viewed as an
extension and a theoretical justification of the hierarchical models we have been working on. It
has the potential to lead to more powerful models of the hierarchical type. It also gives funda-
mental reasons for the hierarchy and how properties of the visual world determine properties
of cells at each level of the ventral stream. Simulations and experiments will soon say whether
the theory has indeed some promise or whether it is nonsense.

As background to this paper, I assume that the content of past work of my group on models
of the ventral stream is known from old papers [25-28] to more recent technical reports [13-17].
See also the section Background in Supp. Mat. [21]. After writing most of this paper I found a
few interesting and old references about transformations, invariances and receptive fields, see
[8,11,19]. I stress that a key assumption of this paper is that in this initial theory and modeling
i can neglect subcortical structures such as the pulvinar as well as cortical backprojections.

1.1. Recognition is difficult because of image transformations. The motivation of this paper
is the conjecture that the “main” difficulty, in the sense of sample complexity, of (clutter-less)
object categorization (say dogs vs horses) is due to all the transformations that the image of
an object is usually subject to: translation, scale (distance), illumination, rotations in depth
(pose). The conjecture implies that recognition —i.e. both identification (say of a specific face
relative to other faces) as well as categorization (say distinguishing between cats and dogs and
generalizing from specific cats to other cats) — is easy, if the images of objects are rectified with
respect to all transformations.

1.1.1. Empirical Evidence (with ]. Leibo). To give a feeling for the arguments consider the em-
pirical evidence — so far just suggestive and at the anecdotal level — of the “horse vs dogs”
challenge (see Figure 1). The figure shows that if we factor out all transformations in images of
many different dogs and many different horses — obtaining “normalized” images with respect
to viewpoint, illumination, position and scale — the problem of categorizing horses vs dogs is
very easy: it can be done accurately with few training examples —ideally from a single training
image of a dog and a single training image of a horse — by a simple classifier. In other words,
the sample complexity of this problem is — empirically — very low. The task in the figure is to
correctly categorize dogs vs horses with a very small number of training examples (eg small
sample complexity). All the 300 dogs and horses are images obtained by setting roughly the
same viewing parameters — distance, pose, position. With these normalized images, there is no
significant difference between running the classifier directly on the pixel representation versus
using a more powerful set of features (the C1 layer of the HMAX model).
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FIGURE 1. Images of dogs and horses, ‘normalized” with respect to image transformations. A
regularized least squares classifier (linear kernel) tested on more than 150 dogs and 150 horses
does well with little training. Error bars represent +/- 1 standard deviation computed over 100
train/test splits. This presegmented image dataset was provided by Krista Ehinger and Aude
Oliva.

1.1.2. Intraclass and viewpoint complexity. Additional motivation is provided by the following
back-of-the-envelope estimates. Let us try to estimate whether the cardinality of the universe of
possible images generated by an object originates more from intraclass variability — eg different
types of dogs — or more from the range of possible viewpoints — including scale, position and
rotation in 3D. Assuming a granularity of a few minutes of arc in terms of resolution and a
visual field of say 10 degrees, one would get 10* — 10° different images of the same object from
z,y translations, another factor of 10® — 10° from rotations in depth, a factor of 10 — 10? from
rotations in the image plane and another factor of 10 — 10? from scaling. This gives on the order
of 10® — 10'* distinguishable images for a single object. On the other hand, how many different
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distinguishable (for humans) types of dogs exist within the “dog” category? It is unlikely that
there are more than, say, 10 — 10°. From this point of view, it is a much greater win to be able
to factor out the geometric transformations than the intracategory differences.

Thus I conjecture that the key problem that determined the evolution of the ventral stream
was recognizing objects — that is identifying and categorizing — from a single training image,
invariant to geometric transformations. It has been known for a long time that this problem can
be solved under the assumption that correspondence of enough points between stored models
and a new image can be computed. As one of the simplest such results, it turns out that under
the assumption of correspondence, two training images are enough for orthographic projection
(see [32]). Recent techniques for normalizing for affine transformations are now well developed
(see [34] for a review). Various attempts at learning transformations have been reported over
the years by Rao and Hinton among others [6,23]. See for additional references the paper by
Hinton [6].

The goal here is instead to explore approaches to the problem that do not rely on explicit
correspondence operations and provide a plausible theory for the ventral stream.

In summary, my conjecture is that the main goal of the ventral stream is to learn to factor out
image transformations. 1 plan to show that from this conjecture may consequences follow such
as the hierarchical architecture of the ventral stream. Notice that discrimination without any
invariance can be done very well by a classifier which reads the pattern of activity in simple
cells in V1 - or, for that matter, the pattern of activity of the retinal cones.

1.2. Plan of the paper. In the introduction I described the conjecture that the sample complex-
ity of object recognition is mostly due to geometric image transformations, eg different view-
points , and that a main goal of the ventral stream — V1, V2, V4 and IT —is to learn-and-discount
image transformations. The first part of section 2 deals with theoretical results that are rather
independent of specific models; they are the main results of this paper. They are motivated by
layered architectures “looking” at images, or at “neural images” in the layer below, through a
number of small “apertures” corresponding to receptive fields, on a 2D lattice. I have in mind
a memory-based architecture in which learning consists of “storing” (the main argument is devel-
oped for a “batch” version but a more plausible “online” version is possible) patches of neural
activation. The main results are

(1) recording transformed templates - the templatebook — provides a simple and biologically
plausible way to obtain an invariant signature for any new object, which can be used for
recognition. This is the invariance lemma in section 2.2.

(2) several aggregation (eg pooling) functions including the energy function and the the max
preserve invariance of signatures in a hierarchical architecture. This is the aggregation
theorem of section 2.3.

Section 3 shows how the natural factorization of the affine group in subgroups implies that,
wrt memory complexity, hierarchies are significantly superior to nonhierarchical architectures.
I also outline a preliminary theory of how different types of invariances may be learned at
the bottom and at the top of the hierarchy, depending on the sizes of the receptive fields. In
particular, I discuss two topics:

(1) most importantly, the transformation “learned” at a layer depends on the aperture size;
this is the stratification theorem.
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(2) less importantly, global transformations can be approximatd by local affine transforma-
tions (the approximation lemma )

Section 4 discusses ideas of how transformations learned in the way described in the first
section may determine tuning properties of neurons in different layers of the hierarchy. In
particular, I show that the spatiotemporal spectral properties of the templatebook depend on
the transformations (represented through stored examples). The connection with tuning of cells
is provided by a linking theorem stating that plausible forms of associative Hebbian learning
connect the spectral properties of the templatebook to the tuning of simple cells at each layer.

Together with the arguments of the previous sections this theory-in-fieri provides the follow-
ing highly speculative framework. From the fact that there is a hierarchy of areas with receptive
tields of increasing size, it follows that the size of the receptive fields determines which trans-
formations are learned during development and then factored out during normal processing;
that class-specific transformations are learned and represented at the top of the hierarchy; and
that the transformation represented in an area influences the tuning of the neurons in the area.
The final section puts everything together in terms of a class of models which extends HMAX.

1.3. Remarks.

e Generic and class-specific transformations We distinguish (as I did in past papers, see
[22,25]) between generic image-based transformations that apply to every object, such as
scale and translation, and class specific transformations, such as rotation in depth, that
can apply (not exactly) to a class of objects such as faces. Affine transformations in R?
are generic. Class-specific transformations can be learned by associating templates from
the images of an object of the class undergoing the transformation. They can be applied
only to images of objects of the same class. This predicts modularity of the architecture
for recognition because of the need to route — or reroute — information to transformation
modules which are class specific [14].

e Memory-based architectures, correlation and associative learning The architecture as-
sumed in this paper can be regarded as a case of memory-based learning of transfor-
mations by storing templates which can be thought of as frames of a patch of an ob-
ject/image at different times of a transformation. This is a very simple, general and pow-
erful way to learn rather unconstrained transformations. Unsupervised (correlational and
Hebbian) learning is the main mechanism. The key is a Foldiak-type rule: cells that fire
together are wired together. At the level of C cells this rule determines classes of equivalence
between simple cells reflecting observed time correlations in the real world, that is transfor-
mations of the image. The main function of the hierarchy is thus to learn different types
of invariances via association of templates memorized during transformations in time.
There is a general and powerful principle here, induced by the markovian (eg differ-
ential equations) physics of the world, that allows associative labeling of stimuli based
on their temporal contiguity. We may call this principle The principle of Probable Time
Smoothness®.

e Spectral theory and receptive fields The third part of the paper discusses the possibil-
ity of a spectral theory trying to link specific transformations and invariances to tuning
properties of cells in each area through Hebbian learning rules. If this research program
bears fruit then we will have a rather complete theory. Its most surprising implication
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would be that the computational goals and some of the detailed properties of cells in the
ventral stream follow from symmetry properties of the visual world through a process of
correlational learning. The obvious analogy is physics: for instance, the main equation
of classical mechanics can be derived from general invariance principles. In fact one may
—in the extreme — argue that a Foldiak-type rule determines by itself the hierarchical or-
ganization of the ventral stream, the transformations that are learned and the receptive
fields in each visual area.

e Subcortical structures and recognition I am neglecting the role of cortical backprojec-
tions and of subcortical structures such as the pulvinar. It is a significant assumption
of the theory that this can be dealt with later without jeopardizing the skeleton of the
theory®.

2. THEORY: MEMORY-BASED INVARIANCE

In this section I have in mind a hierarchical layered architecture as shown in Figure 2. I also
have in mind a computational architecture that is memory-based in the sense that it stores sen-
sory inputs and does very little in terms of additional computations: it computes normalized
dot products and max-like aggregation functions. However, the results of this section are inde-
pendent of the specifics of the hierarchical architecture and of explicit references to the visual
cortex. They deal with the computational problem of invariant recognition from one training
image in a layered architecture.

The basic idea is the following. Consider a single aperture. Assume a mechanism that stores
“frames”, seen through the aperture, as an initial pattern transforms from ¢ = 1 tot = NV under
the action of a specific transformation (such as rotation). For simplicity assume that the set of
transformations is a group. This is the “developmental” phase of learning the templates. At
run time an image patch is seen through the aperture, and a set of normalized dot products
with each of the stored templates and all their stored transformations is computed. A vector
called “signature” is produced by an aggregation function such as a max over the dot products
with each template and its transformations. Suppose now that the same image is shown again
but in this case transformed. The claim is that if the templates are closed under the same group
of transformations then the signature remains the same. Several aggregation functions, such
as the average or the max (on the group), acting on the signature, will then be invariant to the
learned transformation.

2.1. Preliminaries: Resolution and Size. The images we consider here are functions of two
spatial variables z,y and time ¢. The images that the optics forms at the level of the retina are
well-behaved functions, actually entire analytic functions in R? since they are bandlimited by
the optics of the eye to about 60 cycles/degree. The photoreceptors sample the image in the
fovea according to Shannon’s sampling theorem on a hexagonal lattice with a distance between
samples equal to the diameter of the outer cones (which touch each other) which is 27 seconds
of arc. The sampled image is then processed by retinal neurons; the result is communicated
to the LGN and then primary visual cortex through the optic nerve, consisting of axons of the
retinal ganglion cells. At the LGN level there are probably several neural “images”: they may
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FIGURE 2. Hierarchical feedforward model of the ventral stream — a modern interpretation of the
Hubel and Wiesel proposal (see [24]). The theoretical framework proposed in this paper provides
foundations for this model and how the synaptic weights may be learned during development (and
with adult plasticity). It also suggests extensions of the model adding class specific modules at the
top.
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be roughly described as the result of DOG (Difference-of-Gaussian or the similar Laplacian-
of-Gaussian) spatial filtering (and sampling) of the original image at different scales. There is
also high-pass filtering in time at the level of the retina which can be approximated as a zero-th
order approximation by a time derivative or more accurately as a filter providing, in the Fourier
domain, SF(w,,wy, w;) + tw F'(wy, wy, w;). Thus the neural image seen by the cortex is bandpass
in space and time. The finest grain of it is set by the highest spatial frequency (notice that if A,
corresponds to the highest spatial frequency then sampling at the Shannon rate, eg on a lattice
with edges 2+ preserves all the information.)

2.2. Templatebooks and Invariant Signatures.

2.2.1. Signatures of images and Johnson-Lindenstrauss. As humans we are estimated to be able to
recognize on the order of 50K object classes through single images, each one with a dimension-
ality of 1M pixels (or ganglion cell axons in the optic nerve). This means high discrimination
requirements.

Since the goal of visual recognition in the brain is not reconstruction but identification or
categorization, a representation possibly used by the ventral stream and suggested by models
such as Figure 2 is in terms of an overcomplete set of measurements on the image, a vector that
we will call here a signature.

We assume here that the nature of the measurements is not terribly important as long as they
are reasonable and there are enough of them. A historical motivation and example for this
argument is OCR done via intersection of letters with a random, fixed set of lines and counting
number of intersections. A more mathematical motivation is provided by a theorem due to
Johnson and Lindenstrauss. Their classic result is (informal version):

Theorem 1. (Johnson-Lindenstrauss) Any set of n points in d-dimensional Euclidean space can be
embedded into k-dimensional Euclidean space where k is logarithmic in n and independent of d via
random projections so that all pairwise distances are maintained within an arbitrarily small factor.

This means that each of the n d-dimensional points can be represented in terms of n k-
dimensional points, via k random projections. For example the vector f can be represented
as the k-dimensional vector resulting by projecting f on the range of the k, d matrix R

T1iqa Ti2 -+ Tid f1
T2a1 T22 -+ T2d f2
1 Rf={ 7 77 ... 7
Tk Tk2 - Tkd fa

The theorem — and related results — suggests that since there are no special conditions on the
projections (in fact they are typically assumed to be random) most measurements will work, as
long as there are enough independent measurements (but still with £ << n in most cases of
interest). Notice for future use that the discriminative power of the measurements depends on &
(and, of course, on the fact that they should be independent and informative).

I describe here a set of measurements and a process of using them — both consistent with
HMAX (a generalization of it) and with the known physiology and psychophysics.
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FIGURE 3. Number of intersection per line (out of an arbitrary but fixed set) provides a highly
efficient signature for OCR.

FIGURE 4. See previous figure.

Informally, the components of the signature vector are the normalized dot products of the image
(or image patch) f w.r.t. a set of templates 73, i = 1, -, k, which are image patches themselves.
More formally, I define templatesets:

2.2.2. Templatebooks. We start defining a set of templates which can be random images, that is
A “templateset” is a set of neural “image” patches 1;,i=1,--- k.
We can think of the templateset T, as a vector of images

T1
T2

(2) Tset =

Tk

Consider now the templateset T, as a column vector of images — thus a tensor since each
element is an image — which can be thought of as k£ templates (eg different patches of an image,
corresponding for instance to different parts of the same object), learned or observed at the
same time ¢ = 1:

Assume now that the image of the object undergoes a geometric transformation due to mo-
tion (of the eye or of the object). For simplicity we will assume that the transformation can
be well approximated locally (see later) by an affine transformation in R*>. We are really in-
terested in perspective projection of 3D transformations of rigid objects and more generally
nonrigid transformations (such as a face changing expression or rotating in depth; or a body
changing pose) but we consider here mostly affine transformations in R*. We will denote as
7 y 7'192, .-+, 7 the images of the same patch at frames (i.e. instants in time) ¢ = 1,--- , N. Thus
each element of the templateset T, is replaced by all the transformations of it to provide the

templatebook (T for simplicity)
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3) T=| T

We call the matrix T a templatebook generated by a templateset and a set (possibly a finite group) of
transformations g'.
Each subset of row of the template book T, such as

g()

T;
1
Tf’
2
4) i

N
7

can be thought of as the set of simple cells, see Figure 23, that are pooled by the same complex
cell. Each simple cell can be thought of as corresponding to a frame in a video associated with
a complex cell'. The formal definition is

Definition 1. A templatebook consists of templateset T; and all its transforms obtained by the action on
7; of elements g of a set of transformations.

2.2.3. Signatures. We now define the signature of an image — a set of features which represents
the fingerprint of the image — used for classification.

Definition 2. The expanded “signature” of f wrt the templatebook T is the vector ¥y = K(f, ;) for
i=1,---,d, where K is the normalized kernel

ILater in section 5 we will see a slightly different interpretation, in terms of principal components of the tem-
platebook.
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Notice that the components of the signature vector can be seen as the projections in the
Johnson-Lindestrauss theorem (nit random anymore!). As we will see later, I am thinking of
a recursive computation of signatures, from layer to layer from small patches to large ones.

2.2.4. Image transformations. Images are functions on R?. A geometric transformation 7" on an
image f(xz,y) is defined as T'fx = f(T'x). For instance, T'f(x,y) = f(u,v), with (u,v) = T(z,y).
In most of this paper, we will consider transformations that correspond to the affine group
Aff(2,R) which is an extension of GL(2,R) (the general linear group in R?) by the group of
translations in R?. It can be written as a semidirect product: Aff(2,R) = GL(2,R) x R?* where
GL(2,R) acts on R? in the natural manner. Later we will assume that transformations induced
by all the elements of GG — or a subgroup of G — are contained in the templatebook (for instance
“all” the translations of a patch 71 ; may be represented (in practice this will be within resolution
and range constraints)).

We say that a group G acts on a space X, if Vg € G is a mapping T'g : XX such that if
9291 = g3, then T'g1(T'g2(z)) = Tg3(x) Vx € X. We say that X X is a homogeneous space of G if
fixing any zo € X, the set T'g(x) ranges over the whole of X as g ranges over G.

2.2.5. The invariance lemma. Consider the expanded signature vector ¥; corresponding to an
image patch f with respect to a templateset, as defined earlier, and a set of transformations.
ThusX; = (f -7, f 72, , f7), where
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[ f(z, y)7i(z, y)dedy
([ £z, y)dady) ([ 7:(z, y)dzdy)]/?

Consider now geometric transformations 7' f(z,y) = f(u,v). We call the transformation uni-
form if the Jacobian J(z,y) = constant. As a major example 7" may correspond to affine trans-
formations on the plane eg x’ = Ax + tx with A a nonsingular matrix.

Then the following invariance lemma holds

(6) fti=

Lemma 1. The expanded signature 3 of f with respect to the templateset T, is equal to the expanded
signature X, of g f w.r.t. the templateset gT ., for uniform transformations.

Proof sketch (see Appendix for proof): It is enough to consider the effect on one of the
coordinates.

[ [, y)mi(z, y)dﬂfdy B
[(J £z, y)dwdy)(f 7i(z, y)dzdy)]/?
[ fu,v)7i(u, v)|J (u, v)|dudv _
[(J f(u, 0) [ (u, v)|dudv)( [ 7i(u, v)|J (u, v)|dudv)]/?
[ fu,v)7i(u, v)dudv
([ f(u,v)dudv)( [ 7(u, v)dudv)]'/?

() fmi=

O

The invariance lemma implies that independently of the templates — and how selective they
are — the signature they provide can be completely invariant to a geometric transformation
which is uniform over the pooling region. We will see later an architecture for which signatures
are invariant recursively through layers. The actual templates themselves do not enter the
argument: the set of similarities of the input image to the templates need not be high in order
to be invariant.

Remark: The analysis of relevant nongeometric transformations is an interesting open question
for future research®.

2.2.6. Closed Templatebooks and Invariance from One Training Example. Let us call a templatebook
closed” relative to a set of transformations g € G, if for any transformation g and for any entry
7;; thereis a k s.t. g7; ; = 7, . Then an object that has image f can be recognized from a single
example, independently of the unknown transformation. For now just notice that if there is a
single training image f of an object and that if a closed templatebook is available in memory,
then the signatures of f are identical (apart from order) to the signatures of gf (see Appendix
in section 7.2).

2The more standard notation is to assume 7 € H with # a Hilbert space and to assume that there is for every
g € G a unitary operator U(g) : H — H such that U is a unitary representation of G. Then for 7 € H the orbit of 7
is the set of vectors that can be reached by the action of the representation: thus

orbitof T=U(g)T s.t.g€q.

A subspace B € H is called invariant if it contains all its orbits. To avoid confusing the reader we use in the main
text the term “closed” instead of the term “invariant”. Notice that G may be the whole affine group or a subgroup
such as the translation group.
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2.3. Invariant aggregation functions. For each complex cell there is a set of templates — that
is a template and its transformations over which the complex cell is pooling. Let us use each
element in the matrix below as the vector of measurements relative to the transformations of
one object-patch, listed in the row in the order in which they appear during the transformations.
So the column index effectively runs through time and through the simple cells pooled by the
same complex cell:

f07'1,2 f07'1,2 fOTl,N
nT formy fomy -+ fomn
fotmy forma -+ foTmn
Definition 3. A signaturebook ¥} holds the signatures of f for a set of templates 7y _,--- ,7p . wrt a set

of transformations g that belong to a group G.

Now one needs to aggregate each set of simple cells into a number, so that it can provides to
a higher layer a signature — a vector of m components (as many components as complex cells).

To accomplish this, the model (for instance HMAX) uses an aggregation function ) such as a
maz of f o 7;; over j or the average of f o 7;; over j or the average of (f o 7;;)? over j. The
latter operation is an approximation of a sigmoidal function describing a threshold operation
of a neuron or of a dendritic spike. These aggregation operations can be approximated by the
generalized polynomial

zn: w; ZL‘Z‘p
(8) y=—=

i=1

for appropriate values of the parameters (see [12]). Notice that defining the p-norm of = with

lz|l, = O |xi\p)%, it follows that maz(z) = ||z|| and energy  operation(z) = ||z||2.

We need to make sure that the aggregation function is indeed invariant. We can prove this
using the invariance lemma 1 in the following way:.

Assume the following Aggregation learning rule:

Assume that templatebooks have been acquired during development at layer i. The rule for assigning
the signature Yy of a new image f at layer i + 1 is to select for each row j of X} (eg for each complex cell)
the value f o7} =4, f o 7.

The current version of HMAX works computes f o 7 = max; f o 7, ;. We will focus later on
the energy operation f o i = 1371 (f o 7;)?)2.

We have the following aggregation theorem:

Theorem 2. If the set of templates is closed under actions of a group then the max of the signature of f
is invariant to transformations of f, that is Xy = X, for g € G (an example of G is G = Af f(2,R).

Proof sketch in the case of [t} = max (see Appendix for proof): By assumption the aggrega-
tion function chooses for an element of the signature at the higher level the max over templates
t (see rule above), providing as component of the higher level signature f o t*. After this choice
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is made during learning, assume that the new image to recognize at run time is f' = 7'f. We
claim that mazer f' ot = f o t*. Assume the opposite eg maxcrf ot > f ot*. This implies that
maxer f ot > fot*, which contradicts the assumption. [

This means that at runtime the max will (in the noiseless situation) provide the same value -
independently of g. Across complex cells this says that the signature is invariant wrt G from layer
to layer.

Note that the same invariance result can be proved for other aggregation functions such as
the average of powers of the elements of the row of X, . The result holds for groups (and not
only the affine group).

The approach taken with the aggregation function (above) is an example of averaging over
the group to obtain invariants, eg R¢[f(z)] = |—Cl;| > qec f(g(x)) and is based on the group prop-
erty (and the possibility to factorize a group such as the affine group in subgroups).

All of the above justifies the following definition

Definition 4. The “G-invariant signature” of f is the vector X (f) =, f o K(f, 7 ;) where K is the
normalized kernel and 7, ; = g, for some g € G, where G is a group and the templates are closed wrt
G. XC9(f) is invariant to any transformation gf of f, g € G.

As we will see later using templates that are the characters of the group is equivalent to per-
forming the Fourier transform defined by the group. Since the Fourier transform is an isometry
for all locally compact abelian groups, it turns out that the modulo or modulo square of the
transform is an invariant. In fact

Theorem 3. For subgroups of the affine group on R? by averaging over the subgroup (ie Rg[f(z)] =
fa >_gec f(g(x)) ) the following aggregation function on a patch I(x) gives a number which is invariant

to any transformation of I: Rg[I(z)] = ﬁ > gea | [ 1(x)g o x(z)dx|* where x(x) are characters of the
Qroup.

In general, signatures at various levels may be used by a classifier.
Remarks: Aggregation functions: invariance and discriminability.

e It is to be expected that different aggregation functions, all invariant, have different
power of discriminability and noise robustness. For instance, the arithmetic average
will tend to make signatures that are invariant but also quite similar to each other. On
the other hand the max, also invariant, may be better at keeping signatures distinct from
each other. This was the original reason for [24] to choose the max over the average3. In
any case, this is an interesting open question for future research®.

e Notice that not all individual components of the signature (a vector) have to be discrim-
inative wrt a given image — whereas all have to be invariant. In particular, a number of
poorly responding templates could be together quite discriminative.

e Consider a group of transformations such as the similitude group of the plane SIM(2)
consisting of translations, dilations and rotations. Its structure corresponds to a semidi-
rect product structure (SO2 x R) x R?. Rotations and dilations commute and the sub-
group of translations is invariant. An aggregation function such as the energy operation

3Notice that zero-crossings — which are relatives of maxima — of one-octave bandpass functions contain all the
information about the function.
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FIGURE 5. An invariant function F (under the group G). Suggested by F. Anselmi.

or the maz can be defined over the whole group or as composition of max over sub-
groups (corresponding to a hierarchical computation).

3. THEORY: HIERARCHY OF INVARIANCES

3.1. Factorization of Invariances and Hierarchies. I assume that the goal of the ventral stream
is to be invariant to transformations of images in the sense described in the previous section,
by storing at least one image T and all its transformations.

The transformations I consider include object transformations which are part of our visual
experience. They include perspective projections of (rigid) objects moving in 3D (thus trans-
forming under the action of the euclidean group). They also include nonrigid transformations
(think of changes of expression of a face or pose of a body): the memory-based architecture
described in section 2 can deal — exactly or approximately — with all these transformations.

For simplicity of the analysis of this section let me consider here transformations described
by Af f(2,R)-the affine group on the plane. A representation of the affine group can be given
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in terms of the matrices
12
) g = t,

1

O Qe
o o o

where the g are representations of the affine group Af f(2, R) which is an extension of GL(2, R
by the group of translations in R?. It can be factorized as a semidirect product: Aff(2,R) =
GL(2,R) x R? where GL(2,R) acts on R? in the natural manner, that is

a b t, 1 0 ¢, a b 0
(10) G=|det, |=|011t, d e 0
00 1 0 0 1 0 01
where the matrix
a b 0
(11) L=|d e 0
0 0 1

can be itself decomposed in different ways for instance by decomposing the 2 x 2 matrix

(12) L’:(fl 2)

as L' = UXVT, where U and V are orthogonal, eg rotations, and ¥ is diagonal, eg scaling.
Notice that Equation 10 is the standard representation of a “forward” affine transformation (
as used in graphics) in which translation follows rotation and scaling (which commute). Our
setup requires the inverse transformation and thus the inverse order (in this example). Notice
also that while the affine group is not abelian, each of the subgroups is abelian, under mild
conditions.

The key observation is that a one layer architecture with a single large aperture looking at
the whole image would need to store the images generated from an initial 7 by acting on it
with all the rotations, scalings, translations and all their combinations. Under the assumptions of
the “back-of-the-envelope” estimate reported in the introduction, this may require on the order
of 10® — 10'* distinguishable images. Compare this to a hierarchy that stores in the first layer
all translations, in the second all rotations, in the third all scalings. I denote the sequence of
transformations as & o M o T, eg the application first of translation, then rotation and finally
scaling (to undo the inverse forward transformation of a pattern). Using the memory-based
module of the previous section, I need to store 3 templates and their transformations in each
of 3 layers: 7; will be stored with all its translations in layer 1, 7, will be stored with all its
rotations in layer 2 and 73 will be stored with all its scalings in layer 3. The total number of
stored templates will roughly be (103 + 10% + 10) — (10° + 10° + 10%). This gives on the order
of 10° — 10° templates that need to be stored in all the layers — a significant saving even for a
memory-based system like the brain. Thus we have a factorization lemma:
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Lemma 2. Suppose that the matrix representation of a group of transformations G can be factorized as
G4 - Go. Suppose that the storage complexity of the memory-based module for G is n = ny - ny. The
storage complexity of a hierarchy of two layers of memory-based modules is n; + n.

Proof: see Appendix®

It is cute to think that evolution may have been tempted by such an memory complexity ad-
vantage of a hierarchical architecture for discounting transformations. Evolution, however, has
a problem. How can it program development of a visual system in such a way that the system
is selectively and sequentially exposed only to translations during development, followed at
some later time by rotations and scalings?

A possible answer is provided by the following observation. Suppose that the first layer
consists of an array of “small apertures” — in fact corresponding to the receptive fields of V1
cells — and focus on one of the apertures. I will show that the only transformations that can be
estimated by a small aperture are small translations, even if the transformation of the image is
more complex.

3.2. Stratification Theorem (with Mahadevan). Consider, given two or more frames observed
through a small aperture of size r, the task of estimating an affine transformation. I conjecture
that the following statement holds:

Stratification Theorem Assume pointwise correspondence between successive frames. Assume a
fixed amount of measurement noise. For increasing aperture size (relative to resolution of the image)
the first transformation that can be estimated reliably above a fixed threshold, is translation. For large
aperture size, more complex transformations can be estimated or approximated, such as the image trans-
formation induced by perspective projection of rotation of a face in 3D. In general, the transformations
that can be estimated for small apertures are generic and independent of the specific object, whereas some
the transformations for large apertures are class specific.

Proof sketch (see Appendix for proof©):

We define an aperture to be small when it is measured in terms of spatial frequencies of the
input “images” (which can be neural “images” provided by the previous layer), see section 2.1:
thus an aperture which is on the order of 10 x A, is small. Informally the proof is based on
the observation that estimation of translation requires estimating two numbers with condition
number equal to 1. Rotation requires estimating three numbers (pure rotation plus translation)
with condition number equal to 1. Scaling requires estimating four numbers (asymmetric scal-
ing plus translation) — and the condition number may be bad. Therefore translation requires
the least amount of bits, followed by rotation, asymmetric scaling and full affine. Thus increas-
ing aperture size corresponds to increasing number of bits (which is correct in terms of the
memory-based module). In summary

e one corresponding point over two frames is enough for estimating the two translation
parameters

e one additional point is needed to estimate the rotation angle or the scaling

e three points are needed to estimate the 6 affine parameters

e more points require a larger aperture for a fixed amount of noise in the measurements

e estimation of rotation and scale requires first estimation of the center of rotation and the
focus of expansion, respectively. It is natural, therefore, to estimate translation first.



Nature Precedings : doi:10.1038/npre.2012.6117.3 : Posted 21 Mar 2012

20 THE COMPUTATIONAL MAGIC OF THE VENTRAL STREAM

Layered architecture
looking at

neural images

in the layer below,
through small
apertures
corresponding to
receptive fields,

on a 2D lattice

Sunday, July 10, 2011

FIGURE 6. A layered architecture with apertures of increasing size (in reality overlapping).

Thus the last transformation that can be estimated when the size of an aperture goes to zero
is translation. [

Notice that for large apertures a transformation that is locally affine or that can be approxi-
mated by local affine transformations may not be globally affine. An example is the transfor-
mation induced by rotation in depth of a face.

Notice that

e the aperture size limits the size of translations that can be “seen” and estimated from a
single aperture (eg a single receptive field or cell)

o there is a tradeoff between large aperture for more robust estimation of larger trans-
formations and the correspondence problem which increases in difficulty (I expect this
argument is equivalent to using correlation between the two frames to estimate param-
eters)
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e growing aperture size corresponds to increasingly complex features (from 1-point fea-
tures to 3-point features)

e for affine transformations the condition number of the problem is 1 for isotropic scaling;
it can grow arbitrarily large depending on the asymmetry of the scaling.

For my argument, I need only to establish that the only transformations that are represented
in a first layer of small apertures, eg “learned” and later discounted (at run time) are (small)
translations. As I will discuss later, the output of an aggregation operation on the first layer
templatebooks will be invariant to most of the small translations®. Repeating the process at a
second and higher layers with the same memory-based mechanism and max gives invariance
to larger translations and more complex transformations. It is unlikely® that there exists a
strict order of learned transformations (after translations in the first layer), such as uniform
scaling followed by rotations followed by nonuniform scaling. In part this is because scaling
and rotations commute. Notice however that the argument of the factorization lemma still
holds.

By using this property of small apertures, evolution can solve the problem of how to enforce
“presentation” of translations only in the first layer during development and thus enforce fac-
torization. The fact that our reasoning can focus on affine transformations is related to a related
property of architectures with local apertures, as shown in the next section.

3.2.1. The local affine approximation lemma. Geometric transformations of the image can be lo-
cally approximated by their “linear” term, eg affine transformations in R? (see section 7.3). It
seems possible to approximate any global transformation of the image arbitrarily well for patch
size going to zero (and increasing number of patches) if appropriate affine transformations are
used for each patch. It seems that the following Approximation Lemma should hold:

Lemma 3. Local affine transformations Af f(2,R) on image patches can approximate any smooth trans-
formation in R? within a given tolerance with a sufficient number of patches.

Proof sketch (see Appendix for proof®): If x, is a point at the center of the patch and
the transformation 7T'f(x) = f(7x) and T is differentiable at x, then its derivative is given by
Jr(xp). In this case, the linear map described by Jr(xo) is a linear approximation of 7" near the
point xo, in the sense that

(13) T(x) = T(x0) + Jr(x) - (x = %0) + of|[x = Xol[).
U

The affine approximation lemma suggests that under some conditions of biological signifi-
cance a set of local “receptive fields” on a lattice may be appropriate for representing (and discounting)
small global non uniform deformations of the image. The conjecture may be another justification
for the biological evolution of architectures consisting of many local apertures, as a first layer.
For remarks on this chapter see section 7.4. It is important to stress that transformations which
are not affine will be approximated by local affine transformations but the signature will not be
completely invariant.

4Signatures at the output of the first layer may not be completely invariant because of “boundary effects” at
each aperture in the present implementation of the model
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FIGURE 7. The conjecture is that receptive field sizes determines the type of transformation that
can be learned. In particular, small apertures allow learning of (small) translations only. As the
receptive field size increases the learned transformations are increasingly complex and less generic
that is specific for specific classes of objects — from translations in V1 to rotations in depth of faces
in patches of IT.

3.3. Transformations: Stratification and Peeling Off. In the previous section 2, I gave some
results and observations on how images could be recognized from a single training image in
an invariant way by learning implicitly a set of transformations in terms of a templatebook.
Let me now summarize the main points of section 3. A one-layer system comprising the full
image (a large aperture) would require that a memory-based module store all the transforma-
tions induced by all elements ¢ of the full group of transformations. It is however more efficient
memory-wise to follow a factorization approach in terms of the subgroups. This corresponds to
a hierarchical architecture dealing with translations first, followed by layers dealing with other
transformations. Luckily for evolution, a first layer of small apertures “sees” only translations
—and can then store the associated transformed templates. The reason for a hierarchy of modules
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dealing each with specific subgroups of transformations is that the memory complexity becomes additive
instead of multiplicative (the case of a non-hierarchical architecture). Thus it is natural that layers
with apertures of increasing size learn and discount transformations — in a sequence, from sim-
ple and local transformations to complex and less local ones. Learning transformations during
development in a sequence of layers corresponds to the term stratification, while the sequential
use of the layers at run time, one after the other, corresponds to the term peeling off. In the pre-
vious subsection 3.2 I conjecture that stratification appears because the kind of transformations
that are learned depend on the aperture (eg the receptive field size of a complex cell), which
increases from V1 to IT. In other words I conjecture that receptive field size determines type of
transformations learned and their sequence. In the final layers the structure and the spectral
properties of the templatebooks may depend on the natural statistics of image transformations.
Ongoing simulations (J. Mutch) should find out how many layers are needed to learn the full
affine transformations over a range of translations. Notice that small apertures can only learn
and represent small transformations, since larger translations will usually yield little correlation
between subsequent frames.

3.3.1. Class-specific transformations. Consider a hierarchy of layers that have learned invariance
to most affine transformations of generic patterns, especially translation and scales. An example
of such an invariant system is the (hardwired) HMAX model at the C2 level. Suppose that a
non-affine transformation is presented such as rotation in depth of a face. The signature at the
C2 level is not invariant to rotation in depth because the translation invariant global templates
at the level of C2 are not invariant to a global non affine transformation. However, an additional
layer (S3 and C3) can store a set of class-specific template transformations and provide the
required class-specific approximate invariance (see Figures 8 and 9). Notice that invariance
to translations and other affine — and generic — transformation up to that level is a significant
advantage (observation by J. Leibo).

4. SPECTRAL PROPERTIES OF OPTIMAL INVARIANT TEMPLATES (WITH J. MUTCH)

In this chapter I consider the question of whether invariances represented in the template-
books may determine the tuning of neurons by assuming appropriate synaptic plasticity rules.
The direct route to answering this question would be to analyze the properties of the learning
rule when the inputs are the elements of the templatebooks (at one stage of the hierarchy).

We outline in this section a theory without mathematical details (which can wait) that links
optimal invariant templates to tuning of cells in different areas through the spectral properties
of the templatebooks. The motivation for analyzing spectral properties is that several plausible
Hebbian rules for synaptic plasticity are known to effectively select principal components of
the inputs.

Let us start with the following observations®:

°I could directly consider the elements of the Lie algebra of the continuous group of affine transformations and
consider their spectrum. From this point of view translation in z corresponds to -£. Note that for elements of the
algebra which are symmetric matrices A then the spectrum of A and the spectrum of T' = e“* coincide. This is not
true if A is not symmetric and thus is not true for translation
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FIGURE 8. The system with a S3 C3 layer approximatively invariant to face-specific rotations
in depth. From [13]. Estimation of identity invariant viewpoint could be performed by a linear
classifier receiving inputs from the S3 units with weights to be learned in a supervised training
phase.

e the left singular eigenvectors of the templatebook do not depend on the order of the
columns in the templatebook®;

e the retina performs both a DOG-like spatial filtering operation (Laplacian of a Gaussian)
as well as a high-pass filtering in time roughly similar to a time derivative.

The key point here is that, without the time derivative, the templatebooks T “learned” from
one or more transformation sequences — literally storing the frames of a movie — only depend
on the statistics of the images and not on the transformation. The temporal derivative however
performs the magic here: the templatebook then depends on the transformation sequence and
so does its spectrum. This can be seen easily in the case of translation where the temporal

®The covariance matrix Q = TT” does not change when columns of T" are permuted since Q = TPPTT =TT7.
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Learning class specific transformations: viewpoint
invariances for faces
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FIGURE 9. The ordinate shows the AUC obtained for the task of recognizing an individual novel
object despite changes in viewpoint. The model was never tested using the same images that were
used to produce S3/C3 templates. A simple correlation-based nearest-neighbor classifier must rank
all images of the same object at different viewpoints as being more similar to the frontal view than
other objects. The red curves show the resulting AUC when the input to the classifier consists
of C2 responses and the blue curves show the AUC obtained when the classifier’s input is the C3
responses only. Simulation details: These simulations used 2000 translation and scaling invariant
C2 units tuned to patches of natural images. The choice of naturalpproxi image patches for S2/C2
templates had very little effect on the final results. Error bars (+/- one standard deviation) show
the results of cross validation by randomly choosing a set of example images to use for producing
S3/C3 templates and testing on the rest of the images. The above simulations used 710 S3 units
(10 exemplar objects and 71 views) and 10 C3 units. From [13].

derivative act as a selection rule that prefers orientations orthogonal to the direction of motion.
Consider the effect of the time derivative over the movie generated by the translation of an
image f(x — vt), where x, v are vectors in R*

df
14 p— . .
(14) =V
Assume for instance that the direction of motion is along the x axis, eg v, = 0. Then
df _of
(15) dt o'

Thus the effect of the motion in the = direction suppresses spatial changes in y, eg spatial fre-
quences in w,, and enhances components orthogonal to the direction of motion. This means
that the time derivative of a pattern with a uniform spatial frequency spectrum in a bounded
domain €2, as an effect of motion along z, gives a templatebook with a spectrum in €2 which re-
flects the transformation and not only the spectrum of the image: iw, F'(w,,w,). Notice that spatial
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FIGURE 10. The sequence of processing stage from the retina (with spatial (DOG) and temporal
d/dt derivative-like filtering to V1 and V2. More in general, instead of d/dt, I think of a filter such
as (B +d/dt)VI(x,y,t) which correspond to the power spectrum in the Fourier domain given by
(82 + w?) F(wy, wy, wy) with F being the Fourier transform of VI (z,y, t).

and temporal filtering commute in this linear framework, so their order (in the retina) is not
important for the analysis. The above arqument is true not only for translations but for other motions
on the plane. From now on, we assume the pipeline of Figure 10.

Consider now the Lie algebra associated with the affine group on the plane Aff(2,R) =
GL(2,R) x R?. The Lie algebra corresponds to the first order differential equation

dz

where z, z, are vectors in R?, A is the 2 x 2 matrix which is here the generator of the Lie group
of affine transformations and ¢ is the parameter controlling rotations and scalings. it can be
interpreted as time of the transformation. Finite transformations, that is elements of Af f(2,R),
are solutions of Equation 16:

(17) z(t) = e*[z(0)] + :L‘o/ etdt].

0
Because of our assumptions about learning invariances (see section 2), invariances to affine
transformations are directly related to actual trajectories in R? of the image while transforming.
These are flows on the plane of which a classification exist in terms of z(, A. For 2y # 0, A =0
the solution is just a straight line in the direction of zy. When zy = 0, A # 0 the origin is
a singular point of the flow. For other initial conditions, the eigenvalues of A determine the
structure of the phase space. In particular, we can associate Lie derivatives to the various linear
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transformations (for orthographic projection) which transform conic sections (ellipse, parabola,
hyperbola, pair of straight lines etc.) into conic sections, leaving the type of conic invariant
(thus a circle viewed obliquely will be seen as an ellipse but can still be recognized as a circle).

For instance the Lie derivatives £, = & and £, = a% represents translations in z and y re-
spectively; the associated trajectories are families of horizontal and vertical straight lines; the
associated features are orthogonal edges (see earlier). In a similar way the Lie derivative asso-
ciated with positive rotations is £, = —y + :1:8% represents translations in x and y respectively;
the associated trajectories are families of concentric circles; the associated features are a star of
radial lines. The Lie derivative associated with the dilatation group is £, = 22 +y8%; the associ-
ated trajectories are families of radial lines; the associated features are concentric circles. Spiral
and hyperbola trajectories are induced by still other Lie derivatives. In general, affine transfor-
mations correspond to linear combinations of the infinitesimal generators of the general linear

group (2, 8%, vy, xc%, ya%). We have the following selection rule:

Lemma 4. Selection Rule Assume that a templatebook is obtained after the V>G o 2 filtering of a
“video” generated by a transformation which is a subgroup of the affine group Af f(2,R). Then the
components in the image spectrum orthogonal to the trajectories of the transformations are preferentially
enhanced.

Remarks

e It may be possible to look at the dynamical system comprising the affine transformations
described in their infinitesimal form (see above) and the dynamic of learning (see next
section) and infer qualitative properties and in particular invariance directly from such
and analysis. Thus it is an interesting open problem whether one could develop a direct
analysis from transformations to receptive fields using tools from dynamical systems [7].

e For reference I collect in the Appendix (section 7.5) a few notes about transformations
and spectral properties of them.

e The hypothesis explored here — PCA of the data matrix — corresponds to maximize the
norm of the time derivative of the input patterns (or more precisely a high-pass filtered
version of it), because of the temporal properties of the retina. This is related to — but
almost the opposite of — the “slowness” principle proposed by Wiskott ( [2,33]) and
made precise by Andreas Maurer.

4.1. Optimizing signatures: the antislowness principle. A continuous image sequence I(z, y;t)
is filtered by the retina in space and time to yield (in Fourier domain) F'(w,,w,;w;) = —(w? +
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sigma=3.0 1.000 0.965 0.648 0.2313
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sigma=a.0 1.000 1.000 0.738 0.7 36
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sigma=7.0 1.000 0.9313 0.803 0.803
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sigma=3.0 1.000 0.333 0.831 0.a30
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FIGURE 11. Principal components of the templatebook obtained from (rightwards) translations
of natural images looked at through a Gaussian aperture (after DOG filtering and temporal de-
rivative). 10 natural images x 255 translations each. The stratification theorem together with the
remarks on spectral properties of transformations implies that Gabor frames should be obtained
in the first layer with small apertures. Figures 15 and 18 show some simulations showing that
Gabor-like receptive field are generated primarily by transformations rather than by the statistics
of natural images.
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sigma=3.0 1.000 0.334 0.801 0.737

FIGURE 12. Principal components of the templatebook obtained from vertical translations of
natural images looked at through a Gaussian aperture (after DOG filtering and temporal deriva-
tive). 10 natural images x 255 translations each.

20 40 B0

wo) G (we, wy) H (wi) I (W, wy; wy). Assume that

(18) H(wy) = (B + iw;) O,

29
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FIGURE 13. Principal components of the templatebook obtained from vertical translations of
random noise images looked at through a Gaussian aperture (after DOG filtering and temporal
derivative). 10 natural images x 190 translations each. This suggests that the PCA do not depend
much on statistics of natural images.

where T'heta,~ is bandpass (eg equal 1 up to |w| = w* because the image is low pass, see section
2.1).

Consider now realizations f; of the process f —representing rows of the templatebook. Taking
principal components of the realizations f;, corresponds to maximize the empirical functional

(19) L(P) = 3 BlIPAIP
1

wrt P, where P is in the class of d-dimensional orthogonal projections.
We use the following theorem to show that in fact a solution of the maximization problem
above can be obtained by projecting onto a dominant eigenspace of L.



Nature Precedings : doi:10.1038/npre.2012.6117.3 : Posted 21 Mar 2012

THE COMPUTATIONAL MAGIC OF THE VENTRAL STREAM 31

sigma=3.0 1.000 0.989 0.740 0.717
20
40 =
50
20 40 GO
sigma=5.0 1.000 0.999 0.838 0.835

20 40 60

sigma=7.0 1.000 0.298 0.890 0.887
20
40
60

20 40 60

sigma=9.0 1.000 0.998 0.919 0.9716

20 40 GO

FIGURE 14. Principal components of the templatebook obtained from vertical translations of
RDI (Random Dots Image) looked at through a Gaussian aperture (after DOG filtering and tem-
poral derivative). 10 natural images x 190 translations each. In all these noise simulations, the
appearance of SV which look like "end stopped” receptive fields is more reliable.

Theorem 4. (Maurer) Suppose that there are d eigenvalues Ay, - - - , \q of L so that they are larger than
all other eigenvalues; and that e; is the sequence of associated eigenvectors. Then

d
(20) mazpL(P) =Y\

the maximum being attained when P is the orthogonal projection onto the span of e;, [ =1,--- . d.

As I will discuss later, if learning at the level of the receptive fields of the set of the simple
cells which are pooled by one complex cell follows Oja’s rule, then their receptive fields cells
reflect the Principal Components of the associated templatebook.

Notice that L(P) corresponds to
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0.25

FIGURE 15. A vertical slice through the 1st and 2nd singular values of aperture sigma=>5 in
Figure 12.

L(P) = BCy + Cj

where C7 and Cj; are the covariance matrices of the processes ¢ and ¢ respectively. Notice that
the two term sum unlike the slowness case of Maurer. Finding the PCA of the retinallly filtered
image in fact projects over projections that maximize changes. In our framework, this is exactly
right: invariance follows from pooling together in the same complex cell projections with large
changes.

Remarks

(22)

e Notice that changing H(w;) = (8 + iw;)O,- into H(w;) = (8 — iw;)O,- does not change

the analysis.

Remember that the translation subgroup as well as the rotation scaling subgroups are
each abelian subgroups’. Fourier analysis can be used then to unify the concept of mul-
tiresolution analysis in each of the cases. The elementary functions of abelian groups are
the characters. For our purposes a character x is a continuous complex-valued function
x : G — C with

x(x+y) =x()-xy), Ix(@)|=1

In this language, arbitrary functions may be expanded into a superposition of charac-
ters which is a Fourier expansion for abelian groups. The Fourier transform over locally
compact Abelian groups is an isometry and hence it conserves energy (we use this prop-
erty with the energy aggregation function). This means also that the same analysis and

7Each of the translation and rotation subgroups forms a representation of the (abelian) additive group since
T(a)T(b) = T(a+b) = T(b)T(a) and R(a)R(b) = R(a +b) = R(b)R(a), whereas for dilations the group is
multiplicative (F. Anselmi).



Nature Precedings : doi:10.1038/npre.2012.6117.3 : Posted 21 Mar 2012

THE COMPUTATIONAL MAGIC OF THE VENTRAL STREAM 33

sigma=3.0 1.000 0.603 0.4a0 0.43a

20 40 B0

sigma=a.0 1.000 0.6E3 0.263
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FIGURE 16. Principal components for a rotating natural image. The rotation is around the
center of the aperture.

the same spectral properties found for translation extend to scaling and rotations and
combinations thereof.
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FIGURE 17. Aperture “looking” at a natural image rotating off-center.

4.2. PCAs, Gabor frames and Gabor wavelets. Let us consider the first layer (corresponding
to V1 in the theory) and dealing with translations. The previous subsection together with Ap-
pendix 7.5 shows that the top (complex-valued) eigenfunction associated with translation seen
through a Gaussian window is a Gabor frame

 (zg—£p)° _(?J(FZM2
¢07§77](x7 y) =€ 20% € 20-y

where the basic frequency w depends on the scale parameter of the associated retinal DOG
filtering and the o are fixed. Eigenvectors with lower eigenvalues will have multiple of the
basic frequency.

Let us now assume based on biological plausibility that

€i27racgw

(1) at each position there are several retinal ganglion cells each associated with DOG filter-
ing of different size

(2) the size of the Gaussian aperture of a simple- complex cell is proportional to the size
of the DOG filters associated with the ganglion cells-LGN inputs pooled by the simple-
complex cell (this corresponds to assuming that complex cells pool the same number of
afferent inputs from the LGN, independently of DOG size).

The consequence of these assumptions is that o becomes inversely dependent on w, eg at each
position the top eigenfunction for each size gives a system of Gabor wavelets

7(%9—059)2 ,<yafcze)2
& .
(23) Goeq(x,y) =€ E e oz iPmmew

5. TOWARDS A THEORY: PUTTING EVERYTHING TOGETHER

In this section I focus on the module of Figure 23 which is repeated across and through layers
in architectures such as the architecture of Figure 2. The module is of course a cartoon and its
details should not be taken too seriously.
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FIGURE 18. Principal components of the templatebook obtained from rotating natural images
such as that of Figure 16 when they are viewed through a Gaussian aperture which does not
include the center of rotation (after DOG filtering and temporal derivative).

5.0.1. Learning rule and receptive fields (with ]. Mutch). The algorithm outlined earlier in which
transformations are “learned” by memorizing sequences of a patch undergoing a transforma-
tion is a complete algorithm similar to the existing HMAX (in which S2 tunings are learned by
sampling and memorizing random patches of images). A biologically more plausible online
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FIGURE 19. Some of principal components of the templatebook look like the end-stopped cells of
Hubel and Wiesel.

learning rule would however be somewhat different: synapses would change as an effect of
the inputs, effectively compressing information contained in the templates and possibly mak-
ing signatures more robust to noise. Plausible online learning rules for this goal are associative
Hebb-like rules. Notice that Hebb-like rules may lead synapses at the level of simple-complex
cells to match their tuning to the eigenvectors of the templatebooks (Hebb-like rules turn out
to be online algorithms for learning the PCA of a set of input patterns). Thus the receptive field
at each layer would be determined by the transformations represented by the complex cells
pooling at each layer.

In particular, let us consider Oja’s rule [10] as an example. It is not the only one with the
properties we need but it is a simple rule and variations of it are biologically plausible.

Oja’s rule defines the change in presynaptic weights w given the output response y of a
neuron to its inputs to be

(24) Aw = Whpt1 — Wy = nyn(xn - ann)
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FIGURE 20. Average of the absolute value of the *change* in C1 units for rotations over 360 degrees.

where is the “learning rate” and y = w™x. Notice that the equation follows from expanding to
the first order Hebb rule normalized to avoid divergence of the weights. Hebb’s original rule,
which states in conceptual terms that “neurons that fire together, wire together”, is written
as Aw = ny(x,)x,. Hebb’s rule has synaptic weights approaching infinity with a positive
learning rate. In order for this algorithm to actually work, the weights have to be normalized
so that each weight’s magnitude is restricted between 0, corresponding to no weight, and 1,
corresponding to being the only input neuron with any weight. Mathematically, this requires a
modified Hebbian rule:

w; 4+ y(x)z;

(Sl + myoyzle)

(25) wi(n+1) =
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FIGURE 21. Rotation centered in the RF. 10 images x 360 steps. CI1 units of 4 orientations.
DOG + D/DT + S1 + C1 + aperture + SVD. 1st four singular values for each aperture.

of which Oja’s rule is an approximation.

Notice that several theoretical papers on Hebbian learning rules, showed that selective changes
in synaptic weights are difficult to achieve without building in some homeostatic or normaliz-
ing mechanism to regulate total synaptic strength or excitability. In the meantime, homeostatic
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FIGURE 22. The effectiveness of the various stimulus subclasses for V4 vs. V2. Each cell from
either area was classified according the subclass to which its most effective grating or contour
stimulus belonged. The resulting distributions are shown here for grating stimuli (panel A) or
contour stimuli (panel B) for both V4 (top row) and V2. See [5].

control of synaptic plasticity — corresponding to the normalizing term in Oja equation — ( [31])
is experimentally well established.

The rules above find the PCA with the largest eigenvalue (see Appendix 7.5.9). I conjecture
that a variation of Oja’s flow above, with appropriate circuitry to support it, may link the spec-
tral properties of the templatebook to receptive field tuning in visual areas. The conjecture is
based on Oja’s and other results, summarized by the following theorem:

Theorem 5. The Oja flow (Equation 24) generates synaptic weights that converge to the two top real
eigenvectors of the input patterns covariance matrix, that is the covariance matrix of the templatebook.

The theorem does not by itself imply the details of what we need. Consider for instance a
max aggregation function. We would need transformed (for instance, translated) versions of the
nth principal component to become the tuning of the simple cells pooled by one complex cell.
A possible scenario is that a Hebb-like rule determines during development tunings of simple
cells following, say, the first principal component with different phase shifts. Then Foldiak-type
learning would wire the “correct” simple cells to one complex cell.

There is however a key observation (by J. Mutch) that allows to link this result with a more
elegant and more plausible scheme for developmental learning of simple-complex cells. The
observation is that the top two PCA for the translation case are a quadrature pair and that
this should be true for the other subgroups of the affine group since the characters are always



Nature Precedings : doi:10.1038/npre.2012.6117.3 : Posted 21 Mar 2012

40 THE COMPUTATIONAL MAGIC OF THE VENTRAL STREAM

Fourier components. It follows that the energy aggregation function is automatically invariant
(because |e™“"* %] = 1) to the transformation. Thus the conjecture is that online learning from
‘objects transforming will induce tunings of “simple cells” corresponding to the quadrature
pair (see Figure 15). Following section 4.2 and Equation 23 the conjecture then is

Theorem 6. Linking conjecture (Mutch and Poggio): If learning at the level of the synapses between
LGN inputs and “simple cell” dendritic branches pooled by one complex cell follows an Oja-like rule, then
their receptive fields cells tuning will 1) reflect the Principal Components of the associated templatebook
2) the top two real-valued PCA (with the same largest eigenvalue) for each aperture are Gabor frames in
quadrature pair, 3) at each position over a set of apertures with different sizes the same PCA form a set
of Gabor wavelets and 4) their wiring implements invariance via an energy aggregation function that
satisfies the invariance lemma.

Notice that small changes in the Oja equations give an online algorithm for computing ICAs
instead of PCAs. What is best theoretically, associated properties and what is true biologically
are all open questions®. It may well be that the same learning rule determines the pooling and
the tuning of the simple cells receptive fields. From this point of view it seems possible (but not
necessary) that a simple cell may be just be a group of inputs on a dendritic branch of a complex
cell. Thus a version of the architecture, with this learning rule, may link the spectral properties
of T to the tuning of the simple units. Figure 23 shows a cartoon of the of the model.

Let us summarize the main implications of this section in terms of templates, signatures and
simple+complex cells. Notice that the templatebook T is a tensor with 7; ; being an array. There
are D PCA components for each T: for instance retaining the first two PCA components shown
in Figure 15 corresponds to replacing T with T with 2 rows. From this point of view, what do
we expect it will happen during developmental learning using a Hebb-like rule? Repeated ex-
posure of a complex cell to stimuli sequences corresponding to the rows of the T should induce,
through the learning rule, simple cell tunings corresponding to the two PCA in quadrature pair
of Figure 15. Simple cells tuned to this Principal Component (it one component in the com-
plex domain) would be pooled by the same complex cell. I think that the learning rule may be
complemented by interactions between complex cells pooling different principal components
to achieve the development of a set of complex cells capable of providing a discriminative and
invariant local signature with the correct lattice density in space and scale.

As noted by J. Mutch, the subgroup of translations is a 2parameter group (translations in
z,y); the subgroup of rotations and dilations is also a two parameters group (p, 0).

6. DISCUSSION

In this section I will first summarize the main ideas emerging of the theory, compare the
new theory with the old model, list potential problems and weaknesses (in “What is under the
carpet”) and finally discuss directions for future research.

6.1. Summary of the main ideas. There are several key ideas in the theoretical framework of
the paper. There are hypotheses and there are theorems.

(1) First, I conjecture that the sample complexity of object recognition is mostly due to geo-

metric image transformations (different viewpoints) and that a main goal of the ventral
stream — V1, V2, V4 and IT - is to learn-and-discount image transformations. The most
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A cartoon of the S:C cell

Sunday, May 29, 2011

FIGURE 23. Cartoon of an SC cell with dendrites representing simple cells and the cell body
performing complex-like pooling. Notice that the theory suggests that the spatial extent of the
receptive field is in general the same for simple cells and for the complex cell that “pools” them. Of
course, learning (by a Hebb-like rule) may induce zero weights in some parts of the receptive field.
Here the simple cells are represented as dendritic branches of a complex cell. The theory leaves
open the question of whether simple cells may instead be independent neurons.

surprising implication of the theory emerging from these specific assumptions is that the
computational goals and detailed properties of cells in the ventral stream follow from
symmetry properties of the visual world through a process of correlational learning. The
obvious analogy is physics: for instance, the main equation of classical mechanics can
be derived from general invariance principles. In fact one may argue that a Foldiak-type
rule together with the physics of the world is all that is needed to determine through evo-
lution and developmental learning the hierarchical organization of the ventral stream,
the transformations that are learned and the tuning of the receptive fields in each visual
area.
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(2) Second, aggregation functions such as the max (in HMAX) ensure that signatures of
images are invariant to affine transformations of the image and that this property is
preserved from layer to layer.

(3) Third, I assume that there is a hierarchical organization of areas of the ventral stream
with increasingly larger receptive fields. The stratification conjecture claims that small
apertures determine a stratification of the invariances from translations to full affine in
highest layers.

(4) The fourth idea is that memory-based invariances determine the spectral properties of
samples of transformed images and thus of a set of templates recorded by a memory-
based recognition architecture such as an (extended) HMAX.

(5) The final idea is that spectral properties determine receptive field tuning via Hebbian-
like online learning algorithms that converge to the principal components of the inputs.

The theory part of this paper start with this central computational problem in object recog-
nition: identifying or categorizing an object after looking at a single example of it — or of an
exemplar of its class. To paraphrase Stu Geman, the difficulty in understanding how biological
organisms learn — in this case how they recognize — is not the usual n — oo but n — 0. The
mathematical framework is inspired by known properties of neurons and visual cortex and
deals with the problem of how to learn and discount invariances. Motivated by the Johnson-
Lindenstrauss theorem, I introduce the notion of a signature of an object as a set of similar-
ity measurements with respect to a small set of template images. An invariance lemma shows
that the stored transformations of the templates allow the retrieval of an invariant signature
of an object for any uniform transformation of it such as an affine transformation in 2D. Since
any transformation of an image can be approximated by local affine transformations (the affine
lemma), corresponding to a set of local receptive fields, the invariance lemma provides a so-
lution for the problem of recognizing an object after experience with a single image — under
conditions that are idealized but likely to be a good approximation of reality. I then show
that memory-based hierarchical architectures are much better at learning transformations than
nonhierarchical architectures in terms of memory requirements. This part of the theory shows
how the hierarchical architecture of the ventral stream with receptive fields of increasing size
(roughly by a factor 2 from V1 to V2 and again from V2 to V4 and from V4 to IT) could implic-
itly learn during development different types of transformations starting with local translations
in V1 to a mix of translations and scales and rotations in V2 and V4 up to more global transfor-
mations in PIT and AIT (the stratification conjecture).

In section 4 I speculate on how the properties of the specific areas may be determined by
visual experience and continuous plasticity. I characterize the spectral structure of the tem-
platebooks arising from various types of transformations that can be learned from images. A
conjecture — to be verified with simulations and other empirical studies — is that in such an
architecture the properties of the receptive fields in each area are mostly determined by the
underlying transformations rather than the statistics of natural images. The last section puts
together the previous results into a detailed hypothesis of the plasticity, the circuits and the
biophysical mechanisms that may subserve the computations in the ventral stream.

In summary, some of the broad predictions of this theory-in-fieri are:

e each cell’s tuning properties are shaped by visual experience of image transformations
during developmental and adult plasticity; raising kittens in a world made of random
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dots should yield normal receptive properties (because all types of motion and transfor-
mations will be preserved) though a world made of vertical stripes only should affect
receptive fields properties;

e the type of transformations that are learned from visual experience depend on the size
of the receptive fields (measured in terms of spatial wavelength) and thus on the area
(layer in the models) — assuming that the size increases with layers;

e class-specific transformations are learned and represented at the top of the ventral stream
hierarchy; thus class-specific modules — such as faces, places and possibly body areas —
should exist in IT;

e the mix of transformations learned in each area influences the tuning properties of the
cells — oriented bars in V1+V2, radial and spiral patterns in V4 up to class specific tuning
in AIT (eg face tuned cells);

e invariance to small transformations in early areas (eg translations in V1) may underly
stability of visual perception (suggested by Stu Geman);

e simple cells are likely to be the same population as complex cells, arising from different
convergence of the Hebbian learning rule. The input to complex “complex” cells are
dendritic branches with simple cell properties;

e the output of the ventral stream is a G-invariant signature, eg is a vector that can be used
as a key for an associative memory (or of a vector-valued classifier); multiple signatures
for classification can be extracted from intermediate areas;

e class-specific modules — such as faces, places and possibly body areas — should exist in
IT to process images of object classes;

e the mix of transformations learned determine the properties of the receptive fields —
oriented bars in V1+V2, radial and spiral patterns in V4 up to class-specific tuning in
AIT (eg face tuned cells);

e during evolution, areas above V1 should appear later than V1, reflecting increasing ob-
ject categorization abilities and the need for invariances beyond translation;

e an architecture based on signatures that are invariant (from an area at some level) to
affine transformations may underly perceptual constancy against small eye movements
and other small motions®.

e invariance to affine and other transformations can provide the equivalent of generalizing
from a single example to “conceptual” invariances;

o the transfer of invariance accomplished by the machinery of the templatebooks may be
used to implement high level abstractions;

e the effect of small motions of the image should decrease going from V1 to IT — apart
from the on-off effects due to temporal derivative-like filtering in the retina and cortex.

e In the preceeding sections I stressed that the statistic of natural images play a secondary
role in determining the spectral properties of the templatebook and, via the linking theo-
rem the tuning of the cells in specific areas. This is usually true for the early areas under
normal development conditions. It is certainly not true if development takes place in
a deprived situation. The equations show that the spectrum of the images averaged

8There may be physiological evidence (from Motter and Poggio) suggesting invariance of several minutes of
arc at the level of V1 and above.
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over the presentations affects the spectral content, eg the correlation matrix and thus the
stationary solutions of Hebbian learning.

e In summary, from the assumption of a hierarchy of areas with receptive fields of in-
creasing size the theory predicts that the size of the receptive fields determines which
transformations are learned during development and then factored out during normal
processing; that the transformation represented in an area determines the tuning of the
neurons in the area; and that class-specific transformations are learned and represented
at the top of the hierarchy.

6.2. Extended model and previous model. So far in this paper, existing hierarchical models
of visual cortex — eg HMAX — are reinterpreted and extended in terms of computational archi-
tectures which evolved to discount image transformations learned from experience. From this
new perspective, I argue that a main goal of cortex is to learn equivalence classes consisting
of patches of images (that we call templates), associated together since they are observed in
close temporal contiguity —in fact as a temporal sequence —and are therefore likely to represent
physical transformations of the same object (or part of the same object). I also conjecture that
the hierarchy — and the number of layers in it - is then determined by the need to learn a group
of transformations — such as the affine group. I prove that a simple memory-based architecture
can learn invariances from the visual environment and can provide invariant codes to higher
memory areas. I also discuss the possibility that the size of the receptive fields determines the
type of transformations which are learned by different areas of cortex from the natural visual
world - from local translations to local rotations and image-plane affine transformations up
to almost global translations and viewpoint/pose/expression transformations. Earlier layers
would mostly represent local generic transformations such as translation and scale and other
similitude transformations. Similar considerations imply that the highest layers may represent
class-specific transformations such as rotations in depth of faces or changes in pose of bodies.

e The present Hmax model has been hardwired to deal with 2 generic transformations:
translation and scale. Figure 24 shows that the model performance on "pure” translation
tasks is perfect, while it declines quickly with viewpoint changes.

e Signatures from several layers can be used by the classifier, possibly under attentional
or top-down control, possibly via cortical-pulvinar-cortical connections.

e What matters for recognition is not strong response of a population of neurons (repre-
senting a signature) but invariance of the response in order to provide an input invariant
as much as possible to the classifier.

6.3. Invariance to X and estimation of X. So far I have discussed the problem of recognition as
estimating identity or category invariant to a transformation X — such as translation or pose or
illumination. Often however, the key problem is the complementary one, of estimating X, for
instance pose, possibly independently of identity. The same neural population may be able to
support both computations as shown in IT recordings [9] and model simulations [26]. How is
this possible in the framework of the theory of invariant signatures? Consider a specific exam-
ple. Suppose that the top layer, before the final classifier, has a templatebook recorded under
viewpoint transformation of a face. A max operation on the dot products of row ¢ of the tem-
platebook — eg max; t;; — provides a number that is (almost) invariant to viewpoint (for new
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FIGURE 24. (a) Illustration of a generic hierarchical model of object recognition in the spirit of
Hubel and Wiesel. In the first layer (S), the simple units are tuned to oriented edges. Each complex
unit in the second (C) layer, pools the first layer units with the same preferred orientation but from
different locations in the visual field. In the penultimate layer, cells are tuned to patches of natural
images. Each high level C unit pools S cells tuned to the same template replicated at different
locations. The image signature computed by the top level C units is then fed into a classifier.
(b) Model accuracy: a summary statistic of the ROC curve for classifying test images as either
containing the same person’s face or a different person’s face. AUC ranges from 0.5- indicating
chance performance- to 1- indicating perfect performance. We repeat this classification allowing
objects translate different distances (pixels). AUC is shown as a function of the invariance range,
over which objects could appear. The receptive field of the top-level C units was 256x256 pixels; the
faces were approximately 100 pixels horizontally. 10 test images of the target face under slightly
variable pose and lighting conditions were used; each was replicated at every position in a radius of
40 pixels. The distractors were 390 different faces presented at the same locations. The simulations
were done with a linear correlation classifier using only a single training view (with ten to be
associated at each position) presented at the center of the receptive field. Just 10 top-level C units
were sufficient for good performance. Each C cell pooled from 3000 S cells optimally tuned to the
same stimulus at each location. The black trace shows the results from testing on images of cars.
In this case there were 5 views of the target car to be associated at each position and 45 distractor
cars replicated at each position. (c) Examples of test images and top level templates. See [17].

face images), see Figure 7. Suppose instead that all the j components are used as a vector input
to a linear classifier — thus the ¢; ; for fixed i and j — 1,--- , N are the “centers”. The classifier
may be trained in a supervised way to classify identity invariant to pose or pose invariant to
identity. Notice that here I do not require that pose and identity transformations have a group
structure nor I require that the templates are closed under the set of transformations. Notice
also that if the elements of the templatebook at that layer are already completely invariant to X,
then an estimate of X following the approach outlined above is not possible.
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I think that estimates of pose, viewpoint, expression are especially important (as well as in-
variance to them). We are certainly able to estimate position, rotation, illumination of an object
without eye movements, though probably not very precisely. In the ventral stream this may
require the use of lower-level signatures, possibly in a task-dependent way, possibly involving
attention.

Of all the transformations, pose is probably one of the most important from the evolutionary
point of view. It is therefore natural to predict from the theory developed so far

o the existence of face patches dedicated to face identification independent of viewpoint,
expression, illumination and even age (all transformations that can be learned approxi-
matively). The same or other face patches — using in part different neurons and circuitry
but the same inputs — are also capable of estimating age, expression, illumination and
viewpoint (independent of identity).

e the existence of a body area dedicated to recognizing independent of body pose but
more importantly capable of estimating pose to support answers to questions such as :
is this facing towards or facing away? is this jumping or kneeling?. Such an area may
be quite large and may be one of the reasons underlying the difference reported in fMRI
and physiology studies between animate and inanimate objects.

For a few transformations — say pose or translation — invariance vs estimation could be ob-
tained by using the max operation vs the argmax operation — both operations understood as
being over the group (assuming that an underlying group structure exists), without the need of
assuming supervised learning at the top layer.

6.4. What is under the carpet. Here is a list of potential weaknesses, small and large, with
some comments:

e “The theory is too nice to be true”. One of the main problems of the theory is that it
seems much too elegant — in the sense of physics — for biology.

e Backprojections are not taken into account and they are a very obvious feature of the
anatomy, which any real theory should explain®. As a (lame) excuse let me mention
that is plenty of room in a realistic implementation of the present theory for top-down
control signals and circuits, managing learning and possibly fetching signatures from
different areas and at different locations in a task-dependent way. A more interesting
hypothesis is that backprojections update local signatures at lower levels depending on
the scene class currently detected at the top (an operation similar to the top-down pass
of Ullman

e Subcortical projections, such as, for instance, projections to and from the pulvinar not
predicted by the theory. The present theory still is (unfortunately) in the “cortical chau-
vinism” camp. I hope somebody will rescue it®.

e Cortex is organized in a series of layers with specific types of cells and corresponding
arborizations and connectivities. The theory does not say anything about

6.5. Intriguing directions for future research.

6.5.1. Associative memories. In past work on HMAX we assumed that the hierarchical architec-
ture performs a kind of preprocessing of an image to provide, as result of the computation, a
vector (that we called “signature” here) that is then input to a classifer.



Nature Precedings : doi:10.1038/npre.2012.6117.3 : Posted 21 Mar 2012

THE COMPUTATIONAL MAGIC OF THE VENTRAL STREAM 47

Top module

z = signature vector -

== >

Associative
e
FJ ) @ S“ E N ﬂ | memory
,T ‘.s‘l

/;\
U |O S3
\\/I
C2
60 s

ErIT) 0000 «
0000 0000 se0e® 000. S1

Y 1

Friday, September 9, 2011

FIGURE 25. The signature produced at the last level (possibly combined with intermediate level
signatures) accesses an associative memory to retrieve information such as a label or an action to
be taken. The signature was previously used to store related information, such as a label or similar
images or experiences associated with the image.

Here I would like to extend this view by assuming that the signature vector is input to an asso-
ciative memory so that a number of properties and associations can be recalled. Parenthetically
we note that old associative memories can be regarded as vector-valued classifiers — an obvious
observation.

Retrieving from an associative memory: optimal sparse encoding and recall There are interesting
estimates of optimal properties of codes for associative memories, including optimal sparsness
(see [18,20]). It would be interesting to connect® these results to estimated capacity of visual
memory (Oliva, 2010).

Associative computational modules Consider the architecture studied here as part of an associa-
tive computing machine. In addition to the memory-based module described in this paper, one
would like to have a few other basic ones. Associations should be able to do binding, such as
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FIGURE 26. For a system which is invariant to affine transformations a single training
example (A) allows recognition of all other instances of parallel lines — never seen before.

bind A to B. Could we develop a universal associative machine which is equivalent to a universal
Turing machine and is biologically plausible®.

SC stage as association If any of the S cells fires, then the C cell fires. This is an OR operation at
run-time and an association during learning. At run time input z retrieves y. The magic of the
memory-based module described in section 2 is that y is independent of transformations of z.

Weak labeling by association of video frames Assume to associate together in the top associative
module (see Figure 25) images in a video that are contiguous in time (apart when there are clear
transitions). This idea (mentioned by Kai Yu) relies on smoothness in time to label via associ-
ation. It is a very biological semisupervised learning, very much in spirit with our proposal of
the S5:C memory-based module for learning invariances to transformations and with the ideas
above about an associative memory module at the very top®.

6.5.2. Visual abstractions.

o Concept of parallel lines Consider an architecture using signatures. Assume it has learned
sets of templates that guarantee invariance to all affine transformations. The claim is that
the architecture will abstract the concept of parallel lines from a single specific example of two
parallel lines. The argument is that according to the theorems in the paper, the signature
of the single image of the parallel lines will be invariant to any affine transformations.

e Line drawings conjecture The memory-based module described in this paper should be
able to generalize from real images to line drawings when exposed to illumination-
dependent transformations of images. This may need to happen at more than one level
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in the system, starting with the very first layer (eg V1). Generalizations with respect to
recognition of objects invariant to shadows may also be possible.

6.5.3. Invariance and Perception. The idea that the key computational goal of visual cortex is to
learn and exploit invariances extends to other sensory modalities such as hearing of sounds
and speech. It is tempting to think of music as an abstraction (in the sense of information
compression a” la PCA) of the transformations of sounds and classical (western) music of the
transformations of human speech®.

6.5.4. The dorsal stream. The ventral and the dorsal streams are often portrayed as the what and
the where facets of visual recognition. It is natural to ask what the theory described here implies
for the dorsal stream.

In a sense the dorsal stream seems to be the dual of the ventral stream: instead of being
concerned about the invariances under the transformation induced by a Lie algebra it seems to
represent (especially in MST) the orbits of the dynamical systems corresponding to the same
Lie algebra®.

6.5.5. For philosophers: Is the ventral stream a cortical mirror of the invariances of the physical world?
Is the brain mirroring the physics of the world? It is somewhat intriguing that Gabor frames -
related to the “coherent” states and the squeezed states of quantum mechanics - emerge from
the filtering operations of the retina which are themselves a mirror image of the position and
momentum operator in a Gaussian potential. It is even more intriguing that invariances to the
group SO2 x R? dictate much of the computational goals, of the hierarchical organization and
of the tuning properties of neurons in visual areas. I have to make an easy joke inspired by the
famous line of a close friend of mine: it did not escape my attention that the theory described
in this technical report implies that the brain function, structure and properties reflect in a
surprising direct way the physics of the visual world.
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7. APPENDICES

7.1. Appendix: Background. In one of the early papers [25] we wrote:

It has often been said that the central issue in object recognition is the specificity-invariance trade-off: Recogni-
tion must be able to finely discriminate between different objects or object classes while at the same time be tolerant
to object transformations such as scaling, translation, illumination, viewpoint changes, non-rigid transformations
(such as a change of facial expression) and, for the case of cate- gorization, also to shape variations within a class.
and also

An interesting and non-trivial conjecture (supported by several experiments, of this population-based represen-
tation is that it should be capable of generalizing from a single view of a new object belonging to a class of objects
sharing a common 3D structure such as a specific face to other views with a higher performance than for other
object classes whose members have very different 3D structure, such as the paperclip objects. In a way very similar
to identification, a categorization module say, for dogs vs. cats uses as inputs the activities of a number of cells
tuned to various animals, with weights set during learning so that the unit responds differently to animals from
different classes.

In the supermemo [26] I wrote:

Various lines of evidence suggest that visual experience — during and after development — together with genetic
factors determine the connectivity and functional properties of units. In the theory we assume that learning plays a
key role in determining the wiring and the synaptic weights for the S and the C layers. More specifically, we assume
that the tuning properties of simple units — at various levels in the hierarchy — correspond to learning combinations
of “features” that appear most frequently in images. This is roughly equivalent to learning a dictionary of patterns
that appear with high probability. The wiring of complex units on the other hand would reflect learning from
visual experience to associate frequent transformations in time — such as translation and scale — of specific complex
features coded by simple units. Thus learning at the S and C level is effectively learning correlations present
in the visual world. The S layers” wiring depends on learning correlations of features in the image at the same
time; the C layers” wiring reflects learning correlations across time. Thus the tuning of simple units arises from
learning correlations in space (for S1 units the bar-like arrangements of LGN inputs, for S2 units more complex
arrangements of bar-like subunits, etc). The connectivity of complex units arises from learning correlations over
time, eg that simple units with the same orientation and neighboring locations should be wired together in a
complex unit because often such a pattern changes smoothly in time (eg under translation).

Since then we mainly focused on the hierarchical features represented by simple cells, on how to learn
them from natural images and on their role in recognition performance. Here we focus on invariance
and complex cells and how to learn their wiring, eg the domain of pooling.

As a consequence of this study, I have come to believe that I was wrong in thinking (implicitly) of
invariance and selectivity as problems at the same level of importance. I now believe that the equiv-
alence classes represented by complex cells are the key to recognition in the ventral stream. Learning
them is equivalent to learning invariances and invariances are the crux of recognition in vision (and in
other sensory modalities). I believe that the reason for multiple layers in the hierarchical architecture is
the natural stratification of different types of invariances emerging from the unsupervised learning of
the natural visual world with receptive fields of increasing size. In addition, the theory of this paper
suggests that the tuning of the receptive fields in the hierarchy of visual areas depends in part from the
transformations represented and discounted in each area.

7.2. Appendix: Invariance and Templatebooks.

e In applications if the templates are appropriately chosen the vectors s will also be made to be
binary, and sparse enough to be close to optimal for associative retrieval of information (see
section 6.5.1).
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e Let us assume the classical case in which the templates are a set of ¢(x). For reconstruction I
would need a set such that f(z) = ) b;¢;(z). Notice that a transformation of f is equivalent to
transforming the templates ¢, that is

If(x) = billg(x).

For the purpose of recognition instead of using the standard aggregation function I" = ), it
is possible to use a different aggregation function. For instance, in the case of piecewise constant
representation (NN representation or vector quantization) I can use the compressed signature .
given by

X = argmax,¢;(z) - f().
The result . corresponds to the template ¢;, which is most similar to f.
e Normalization in the normalized dot product is needed to ensure invariance for scaling.

7.3. Appendix: Affine Transformations in R2. Let us assume - in this section — an z,y representation
of images and transformations on them. In this representation, the components of the vector are the x, y
coordinates of different features in an image. The features could be individual pixels set in correspondence
across different images. A different representation that we will use in other parts of the paper is implicit
and binary: we use 1 if a pixel is on and 0 otherwise. In this latter case, a vector corresponding to an
image when displayed as a 2-D array is a binary image.

For each feature with coordinates x, 3y, we consider affine transformations defined as a 2 x 2 matrix

a b
(26) H:<d€>.

Then an affine transformation with translations is

(27) o =Tz +t
with

and

For a rotation of an angle ¢ the matrix IT is

cost  sinf
I = . .
( —sinf  cosf )
It is possible to represent in a more compact way affine transformations (including translations) using
homogeneus coordinates with the vector v

and the 3 x 3 matrix IT+ acting on it
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Thus 2/ = IT'z.

Notice that the matrices IT' are representations of the affine group Af f(2,R) which is an extension
of GL(2,R) by the group of translations in R2. It can be written as a semidirect product: Aff(2,R) =
GL(2,R) x R? where GL(2,R) acts on R? in the natural manner.

7.3.1. Decomposition of affine transformations. There is another related decomposition of affine transfor-
mations, called the RQ decomposition. An homogeneous matrix A’ can be decomposed as

A= MK
where M is an orthogonal rotation matrix and K = LS is an upper triangular matrix, L is a translation
matrix and S is a shear and scale matrix. Thus

cosd sinf 0

M = —sinf cosf 0
0 0 1
and
1 0 ¢t
L= 01 ¢
0 0 1
s, k O
S = sy 0
0 1
and
Sy kg
K= 0 sy ty
0 0 1

7.3.2. Approximation of general transformations in R%, Assume that there are several features in the image
(in the limit these features may be pixels in correspondence). Then the image can be represented as a
vector

x1
Y1

T2

TN
YN
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Assume the same affine transformation is applied to the whole vector. Then Il is

A 0 --- 0
(30) nm=| ° B0
0o 0 --- Z
where A, B, - -- , Z have the form of equation 9. If the same affine transformation is applied everywhere

then the 2 x 2 blocks is such that A = B = Z (this is the case we call globally affine).

7.4. Appendix: Stratification. .

e The size of an aperture is measured in terms of the wavelength of the highest spatial frequency
contained in the visible patterns. In the case of V1 the input is from the LGN and can be repre-
sented as DOG filtered image. Notice that the optics of the human eye is bandlimited with an
upper cut-off spatial frequency of 60 cycles per degree.

e Local linear approximations can approximate arbitrarily well a globally nonlinear function. This
is what happens here with the approximation of transformations. The complexity of the trans-
formation to be learned (linear vs strongly nonlinear) also affect sample complexity: much fewer
data are needed to learn a local affine transformation than a complex global one. This may rep-
resent an argument to show why a hierarchical architecture — with increasing aperture sizes (eg
decreasing number of apertures) and limited to learn simple affine transformations in each aper-
ture — is optimal or suboptimal.

e The Jacobian determinant at a given point gives important information about the behavior of a
function 7" near that point. For instance, the continuously differentiable function 7' is invertible
near a point x if the Jacobian determinant at the point is non-zero. This is the inverse function
theorem. The absolute value of the Jacobian determinant at x( gives us the factor by which the
function T" expands or shrinks volumes near x.

e In lemma 3 if we assume that the image is a smooth function of z,y we can then represent it up
to linear terms within a small enough patch in terms of its Taylor series around the center of the
patch. Then the proof can use a Taylor expansion of the image around a point z, yo within a
patch. The assumption that approximation error with linear and constant terms should remain
< K then determines the size of the patch.

e A radially symmetric aperture (a disk) corresponds to convolution in the Fourier domain with
Ji(wr), where J; is the Bessel function of the first kind. A large aperture corresponds to an
increasingly delta-like Fourier transform; a small aperture corresponds to broader and broader
envelope and more and more “blurring” (in the frequency domain). The same reasoning can be
repeated with a radially symmetric spatial Gaussian modeling the “aperture”. Itis also important
to remember that we consider affine transformations which are uniform within an aperture (eg
within the receptive field of one cell). Clearly, a large range of complex, non-uniform global
transformations of the image can be approximated by local affine transformations.

e Statistics of image transformations: Hinton mentions that even at a fairly large patch size, uni-
form shifts of the entire visual field are the predominant mode of variability in broadcast video.

e The usual representation of an affine transformation in R? is such that the sequence of trans-
formations is rotation and scaling followed by translation. This implies that the inverse of it —
which is the transformation of interest to us — is translation followed by rotation+scaling. For
uniform scaling the order of rotation and scaling does not matter since they commute. For in-
verse nonuniform scaling a possible decomposition (after translation) is rotation followed by
nonuniform scaling followed by another rotation.
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e Do the statistics of natural (image) transformations (how frequent rotations of different types are,
translations etc) play a role?

e Stratification conjecture Translation invariance is achieved by C units which pool together the
responses to the same set of S templates at many different locations. The association can be per-
formed on the basis of the temporal continuity of the S templates activated by the object trans-
lating. The S templates could be pre-existing or learned simultaneously with their association
by temporal contiguity (see later). Any transformation could be learned by simple association of
templates memorized during the transformation of an object.

7.5. Appendix: Spectral Properties of the Templatebook.

7.5.1. Spectral Properties of the Translation Operator. The eigenfunctions depend on the representation we
use for images. The standard representation is in terms of x,y coordinates of corresponding features
or points in images. In this explicit representation of images as vectors of z,y coordinates, translations
cannot be mapped to matrices acting on the vectors, unless I use homogeneous coordinates (see section
7.3). As we will see, in this representation translations do not commute with scaling and rotation; scaling
and rotation commute which other only if the scaling is uniform.

It is well known that the eigenfunctions associated with the translation operator (in R? in our case)
are the complex exponentials. The informal argument runs as follows. Consider the translation operator
acting on functions ¢(z) in Ly defined by T}, ¢(z) = ¢(x — x¢). The operator T, = e~ "0dr is unitary and
forms a representation of the additive group. The definition leads to a functional eigenvalue equation

¢(z — z0) = Ap(z)
with solutions (see Supp. Mat. [21]) ¢(z) = ™.

7.5.2. Spectral properties of the uniform scaling and rotation operators. The eigenfunctions of rotations and
uniform scaling are complex exponentials in polar coordinates. In other words ¢(z, y) = pe? is a solution
of the eigenvalue equation for the rotation operator R

Ryyp = Ao
with A = €0, and similarly for the scaling operator, where the eigenvalue is real.

7.5.3. Compositions of transformations. Assume the semidirect product Aff(2,R) = GL(2,R) x R? for
a composite transformation that I have introduced earlier. Let us focus on the linear transformations
represented by a two-by-two matrix A, neglecting translations. A can be decomposed using SVD as

A=UxvT
where all matrices are 2 x 2, ¥ is diagonal and U and V' are orthogonal. Thus any affine transformation
represented in this way is decomposed into a rotation followed by asymmetric scaling followed by a
rotation. It follows that the condition number of A is 1 if scaling is isotropic and larger than 1 otherwise.
It is possible to consider a sequence of transformations such as for instance scaling and rotation and
analyze it in terms of the SVD decomposition.

7.5.4. SVD of a “movie”: temporal order (by J. Mutch). The typical SVD setup is
Ais M x N matrix, A = USVT, where Uis M x M, Sis M x N,and V is N x N. Now suppose 1
permute the columns of A. Then:
e The matrix U is unchanged, except that some of the columns might get multiplied by —1.
e The matrix S is unchanged.
e The matrix V is different.



Nature Precedings : doi:10.1038/npre.2012.6117.3 : Posted 21 Mar 2012

THE COMPUTATIONAL MAGIC OF THE VENTRAL STREAM 57

Thus, SVD depends only on the entire “cloud” of frames we give it and temporal ordering is irrelevant.

7.5.5. Gabor frames. The windowed Fourier transform (WFT) and the inverse are
(31) F(w,a) = /dwf(x)G(ﬂs —a)e T

1 W
(32) f(z) = Il /dwdaG(m —a)F(w,a)e

An examination of the first equation shows that F'(w, a) is the Fourier transform of f(z)G(x—a), thatis
the pattern f(x) “looked at” through a Gaussian window G (z) centered at a. Since Fourier components emerge
from translation, this implies that Gabor wavelets of the form G(x)e~*® emerge from translations of f(z)
modulated by G(z).

The previous argument is for a single (Gaussian, say) fixed aperture centered in a. One can ask
whether f(x) can be represented in terms of several apertures spanning a lattice in z,w space. The
answer is affirmative for x € R! (see [4] and references therein): the Gabor system (composed of Gabor
or Weyl-Heisenberg frames)

(33) Gr = X ™e ™ () € A)
is a frame for a sequence A of sufficient density.

7.5.6. Gabor wavelets. Separately, it has been argued that actual Gabor wavelets (with ¢ depending on w)
are a representation of the similarity group (in R?). Stevens [30] develops an interesting and detailed ar-
gument for Gabor receptive fields in V1 to be implied by “invariance” to translations, scale and rotations.
His Gabor wavelets have the form

_ (=g —£9)2 _ M
boen(z,y)=e i e 0
where the center of the receptive field is &y, 19, the preferred orientation is 6 and o2 and 05 are propor-
tional to ﬁ
This family of 2D wavelets, and their 2D Fourier transforms, is each closed under the transformation
groups of dilations, translations, rotations, and convolutions.

ei27rxgw

7.5.7. Gabor frames diagonalize the templatebooks acquired under translation through a Gaussian window. The
argument is about the spectral content of a row of the templatebook acquired by recording frames of
a video of an image patch translating and looked at through a Gaussian window. The row of the tem-
platebook is a tensor with the rowindex denoting time and the other two indeces running through the x
and y coordinates of the image patch. Suppose that the translation is parallel to the x coordinate. Then
“flattening” the tensor gives a Toeplitz matrix, since matrices at time ¢ and i + 1 are shifted along x.
Toepliz matrices have spectral properties closely related to circulant matrices. For simplicity I describe
here, as an example, the analysis for circulant matrices. This is what I would obtain from each row of
the template book if the patterns moving behind the Gaussian window would be periodic (eg have the
geometry of a thorus). In this case, the DFT diagonalizes the circulant matrix X. Thus

FTXF =A,
where A is a diagonal matrix. In particular, a column of the matrix, which is an image “looked at”

through a Gaussian window, can be represented as GI = G ) el = > Ge™ thus in terms of
Gabor frames.
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Sunday, August 7, 2011

FIGURE 27. For a object moving at constant speed in 1D the support of the spatial spectrum
is on the line corresponding to v = const. Temporal bandpass filtering affects spatial frequency
(see [1]). The spatial 2D case deserves some additional thought..

Well-know results (see for instance [4]) extend considerably the math of this section — for instance
providing conditions on the lattice of the “apertures” to ensure good global representations. It would be
interesting to explore this issue and the related one about sampling the scale space and which mecha-
nisms during development may be responsible for it©®.

7.5.8. Lie algebra and Lie group. The Lie algebra associated with the Lie group of affine transformations
in R? has as an underlying vector space the tangent space at the identity element. For matrices A the
exponential map takes the Lie algebra of the general linear group G into G.

Thus a transformation 7' of = parametrized by ¢ can be represented as 7' = e, Notice that if A is
symmetric then A = UAUT and

(34) T =t = VAT = gty

and thus the spectrum of A and the spectrum of T' coincide. This is not true if A is not symmetric.

7.5.9. Oja’s flow. An interesting version of Oja’s rule is the version that applies to D’ neural units — in
our case the D’ complex cells associated with the first rows of a templatebook:

(35) Wit = Wy + pxlzr — Wiyl

where Wi 1 = [wi(1)wg(2) - - - wi(m)] is the weight matrix whose columns are the individual neuron
weight vectors wy (i) and y; = WYz, is the output vector of D elements.
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7.6. Appendix: Mathematics of the Invariant Neural Response (with L. Rosasco). We provide a math-
ematical description of the neural response architecture [29] of Figure 1, which is designed to be robust
to transformations encoded implicitly in sets of templates. Robustness is achieved by mean of suitable
pooling operations across the responses to such templates. The setting we describe is a modification of
the one introduced in [29].

7.6.1. Framework. We start giving the basic concepts and notations describing the framework we con-
sider.

Architecture Elements The new neural response is defined by an architecture composed of the following
elements.

e A finite number of nested sets p; C p2 C --- C py, that we call patches.
e A family of function spaces defined on each patch

(Im(p;))i=y, where Im(p;)={z|z:p;—1[0,1]}, i=1,...,n.
e A family of finite sets of maps from a patch to the next larger one,
(H:)i=!, where Hi={h|h:p;— pis1},

that we call decomposition maps. The name is justified by the observation that H; describe how
a function = € Im(p;+1) can be decomposed in a set of functions = o h, h € H;, with smaller
domain, namely a set of parts.

7.6.2. Tuning Function. A tuning function K : R? x R? — [0,1] is given, which is a reproducing kernel
Hilbert space. The tuning function can be naturally restricted to R® x R®, with b < d. The two main

examples of tuning function we have in mind are the Gaussian K (z,2') = exp —v ||z — /||* and the
(z,2")

= e, Where {-,-), ||| are the inner product and norm in R%.

normalized inner product K (z, ')

7.6.3. Families of Invariance Sets. A last crucial ingredient is needed to define the generalized neural re-
sponse. A family of sets whose elements are themselves sets of functions, that is

(Vi)py where Vi={v|v={t|tem(p)}}, i=2,...n.
We assume that |V;| < d, and |v| < d forv € V; and all i = 2,...,n. Each element v of a set V is called an
invariance set.
7.6.4. New Neural Response Definition. The definition of the generalized invariant neural responses is the

following.

Definition 5. Given an initial neural response Ny : Im(p1) — RP, p < d, the m-layer neural response Ny, :
Im(py,) — R‘V’”,for m=2,...,n, is defined as

(36) Npn(2)(v) = max { > K(Np-1(z0h), Ny 1(to h))}

tev
heH

with x € Im(py,), h € Hp—1, v € Vi,
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7.6.5. Learning. The interpretation of the above model that suggests how the invariance can be learned
from data. Having in mind problems in computational vision, we think of Im(p;);>; as images of in-
creasing size.

The patches can be thought of as squared domains centered around the origin. The decomposition
maps describe how an image can be decomposed into (possibly overlapping) image patches. In the
above construction an invariance set v € V,, is often an ordered set of images. In practice this set can
be obtained from a video sequence v so that, if v = {t1,...,t,} then ¢y,...,t, correspond to frames at
successive instants of time. The recording of sets of video sequences is the learning phase of the above
model.

7.7. Restricted Appendix: Future projects, open questions and garbage collection.

7.7.1. Definitions and Theorems we need to formulate (and in a couple of cases to prove).
Definition 6. A set of transformations... on images...seen through a Gaussian aperture

Definition 7. The group of affine transformations consists of rotations scalings and translations. The affine group
Af f(2,R) which is an extension of GL(2,R) by the group of translations in R

Theorem 7. Af f(2,R) can be written as a semidirect product: Af f(2,R) = GL(2,R) x R? where GL(2,R) acts
on R? in the natural manner. Each of the subgroups (transla, rotation, scaling) is LCA. Rotation and (symmetric?)
scaling commute and have same characters but translations and the rest does not.

Lemma 5. A representations of the affine group Af f(2,R) is given by the matrices IT'.
Lemma 6. The generators of the Lie algebras corresponding to the subgroups of the affine group are...
Definition 8. A templatebook is generated by g"tg

Theorem 8. For discrete ? affine subgroups by averaging over the subgroup (ie Rg[f(x)] = ‘—(1;' >gec flg(x)))
the following aggregation function on a patch I(x) gives a number which is invariant to any transformation of I:

RlI(@)] = iy Tyec | [ 1(@)g o x(@)del? = i Ygee 1) = [1(w)]?

Lemma 7. The characters of each of the subgroups of Aff are Fourier x(x) = e™““and any function ? can be
represented in terms of them

Theorem 9. Empirical eigenvectors of templatebook converge 7?7 to G(x — x¢)e™®

Theorem 10. For each subgroup |I(w)|? is invariant

Theorem 11. The Oja flow of sample rows of the templatebook converges to the character of the group

Theorem 12. Stratification. Suppose a finite large window (visual field). Suppose that rotations, expansions
and trans are happening with same probability and random origin. Suppose an aperture in random position. For
aperture size decreasing ...for most apertures the best estimate (for a given amount of noise) is translation

Questions

what are the main PCAs of faces rotating in depth? Simulations...

what does Oja flow converge to?

should we work with the quotient group from layer to layer (peeling off)? Theorem?



Nature Precedings : doi:10.1038/npre.2012.6117.3 : Posted 21 Mar 2012

THE COMPUTATIONAL MAGIC OF THE VENTRAL STREAM 61

7.7.2. Visual abstractions.

e Line drawings Suppose there are templatebooks that contain equivalence sets for grey level edges
and drawings. Then line drawing may be quasi-equivalent to natural images. This has to be
formulated and looked at in detail®. Get cartoons and affine transformations of them from
Andrea! Consider adelson normal from learning from line drawings of complex curved shapes
associating different line drawings together (under transformation)...this can be done even if line
drawings are not in the object but in the image and are ridges of luminance®®.

e Collinearity Similarly to the point about parallel lines: one example is enough to cover a large
number of instances of collinearity®. Are cells in higher areas (V2?) sensitive/invariant to
collinearity?

e Triangles Same as above because of invariance to affine transformations

e Numerosity Consider a small number, say 3, of squares. Consider all affine transforms and possi-
bly blrurring as well as derivative high-frequency filtered versions. This will consist a large set
of images of 3 elements.

e Bilateral or other symmetry yes, if representationbelow is closed and complete up to that layer —
then it is just a property of the last templates (bilateral symmetry or any other symmetry)

o Invariance does not mean blindness The architecture provides information to stages above it (such
as a classifier) from all areas. This allows to have for instance selectivity to object identity while
invariant to position but at the same time some selectivity to position independent from identity
(as it is experimentally the case in IT cells).

e Compositionality Is it possible and does it make sense to have templates that compose patterns
in more complex ones? I am thinking of a horse and a rider. The templates would involve a
transformation from a person to a person riding a horse. They may allow an approximative
invariance in recognizing a person as a person independently from whether the person is riding
an animal®P.

o Classes of equivalence and concepts Classes of equivalence are pretty abstract, so this is a promising
project.

e consider transformation of programs (paper on using genetic algs)

7.7.3. Against a “naive slowness” principle. A naive slowness principle will prefer features that are parallel
to the motion underlying the transformation (lines parallel to the direction of translation, circles for
rotations, star patterns for expansion) whereas the approach here chooses exactly the orthogonal features
(lines orthogonal to the direction of translation, star patterns for rotations, circles for expansion) and
then builds invariance to their shifts. The slowness principle of Maurer (who has a cleaner formulation
than Wiskott) may not have the full extent of this problem because it adds to slowness a constraint of
maximal variance of the features. Wiskott’s Figure 12 is telling. For rotation, for example, they get
ring-like features, i.e. features that are parallel to the direction of the transformation, not orthogonal.

Notice that spatial Fourier components in the image which are parallel to the direction of motion are
effectively filtered out at the level of the LGN by temporal bandpass filtering.

7.7.4. Invariances and constraints®. Symmetries and invariances are almost equivalent (in the language
of physics). Some of the interesting constraints are implied by general invariances, such as invariance
to the choice of units of measure. They also correspond to constraints (for instance consider E — mc? =
0). Appropriate constraints are key in making an optimization problem well-posed and in particular a
learning algorithm to be predictive.

7.7.5. Notes and Questions.
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e Suppose that the normalized dot product is replaced by a dot product. Suppose that the max

is replaced by the average. Will the hierarchical architecture still work? If yes, this would be
somewhat surprising because this simplified architecture is completely linear. A possible reason
may ve that hierarchical architectures may be decomposing a nonlinear problem in locally linear
problems.

Analysis of linearized architecture: it should work even if with — probably — suboptimal discrim-
inability. The reason to do it is that the analysis should be easy.

o HMAX with average: It should be tried again: how does it do on standard databases?
e There is a possible “generative” version of the model for learning invariance to transformations

outlined in the main text. Each layer may transform the input “image” — instead of simply encod-
ing invariant signatures. In this case the transformation operator — a matrix — could be learned
by an associative memory module which associates a templateset z = 7 with its transformed
version y = T'7, both observed as frames of a “video” recorded during a transformation. Thus T’
represents the transformation between = and y and can transform z into y.

The (non-symmetric) matrix K is learned by associating a templateset = = 7 to its transformed
version y = 1’7, both observed as frames of a “video” recorded during a transformation. Let
us assume that there are many, say M, such pairs, thus M columns of the matrix X and of the
matrix Y°. For simplicity we assume K to be optimal in the least-square sense. Thus K = Y Xt =
Y XT(XXT)~L. We are interested in the structure of K as it is learned layer after layer.

Gedankenexperiment: learning transformations and receptive fields using RDI One of the underly-
ing hypotheses here is that the receptive fields in the various areas of the ventral stream are
determined by the transformations represented in each area. It may be interesting for empirical
studies to use feature-free patterns in order to learn transformations such as RDIs — eg Random
Dot Images. If the hypothesis is right, interesting receptive fields should emerge. Notice that for
“implicit” representations of RDIs in terms of binary arrays X' is X' ~ I and thus K ~ Y X7,
where Y X7 is the empirical correlation function of z and y. In a sense, K is a generative model
for whatever discriminative scheme uses the associated information. The spectrum of X X7 and
Y X7 are similar in this framework. It follows that there there is a very intimate relationship
between the learned K and Glass [3] patterns, which are superpositions of two RDIs, eg = and y.

Notice that so far I have used vectors for images: for instance z; is a component of the vector
x representing a 2D image. Thus the index i is equivalent to some &, (with k,[ — 7) in the array
representation of the image.

This Gedankenexperiment (also done in reality) suggest that the tensor K when trained with
translations in a fixed direction, will translate pixels in the array z in a direction in the plane, that
is K; jx; ~ 6(i +1,k)é(4,1) for horizontal translations. When trained with rotations will rotate
pixels.

Let us assume that T, is represented by a linear kernel T}, (x, y). Assume that its action on ¢(x)
is described by

/ Tuy (@ — W) (u) = d(x — x0)

and in addition

[ Tt = 0~ u0) = 6z = 20 o)

9The rows of T are now columns in X and Y.
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for any g, to reflect natural properties of translation. Because of linearity and shift-invariance
the Fourier transform “diagonalizes” T' giving

A A ~

Tzo¢ = (be_iwxo

from which we derive

~

Tx _ e—iwa)o
0

and T, é(z) = ¢(x + o)

Spectrum of small apertures reflects transformations independent of objects; large apertures
spectrum reflect class. Notice that the size of the aperture controls the complexity eg the de-
grees of freedom of images there.

In small apertures learning may have a long time constant, thus what is learned is across many
different objects and becomes independent of objects. In large apertures time constant may be
short so only indivisual videos are stored and learned in order to have class-specific invariances.
The fully linear case may be a good simple example to think about: averaging and convolutions
and subsampling from layer to layer.

is normalized dot product effectively linear? If yes and if max is replaced by average then where
are nonlinearities? could a fully linear architecture be enough? Notice that average preserve
invariance of signatures from layer to layer...However, it may loose in resolution so max or other
nonlinear operation may be better. A good example is given by zero-crossings

Question: WHY from V1 to V2 to V4 to IT a factor 2 per step in RF size? Is it because of cor-
repsondence? Doubling in « slope in size = aeccentricity (roughly) from V1 to V2 to V4: check
gadass? Is because of increase in S and C?

Body pose areas—thus animate+inanimate? The distinction could also be because of self-motion
vs no self-motion...

e Place area may involve perspective transformations
e Estimate signature invariant of pose AND pose invariant of identity (see above). Is there a role

for max over pose and max over identity (like in supervector?)?

e which invariances etc for dorsal stream?
e is the dorsal stream evolutionary older? what about development?
e Not reconstruction. Just signature More in general if goal is not reconstruction but matching

then like stereo I want large neighborhood with complex features and small N with simple fea-
tures...important to have dictionaris which are not too big i each N and to avoid false target
problem. Each N has its dictionary of t and of Tt...

We conjectured (see Supermemo) that generic as well as class-specific transformations are learned
by exploiting correlations in time (via mechanisms such as trace rule)

Hmax can learn (unsupervised, from visual experience) invariance to generic transformations
eg translations (cite Masquellier serre poggio) and invariance to class-specific transformations
eg viewpoint. The model hierarchy figure shows that C3 features do well on viewpoint and
the other figure shows thatC3 features may be class-specific (the figure that shows the results of
encoding templates on the wrong class)

e S cells (features) are not so critical (see results from other groups e.g. Serre, LeCun, Ng, Leibo )
e C cells (invariances/ classes of equivalence) are key
e we conjecture that in evolution the hierarchy of cortex follows from the need to learn from expe-

rience increasingly complex transformations from translation and scales to viewpoint and body
pose
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The visual cortex inherit symmetry properties of the physical world, in part through evolution
and in part through early visual experience during development, through hierarchies of simple
associative learning mechanisms.
a neuron with 3 bits in the model is equivalent to 3 binary neurons: in which sense? See memo
of Sharat...Notice that in general a vector of n elements can be encoded as a number say binary
Under orthographic projection 3D affine reduces to GL(2), probably nonlinear subspace of 2D
affine.

- Glass patterns experiments at various eccentricities

- adapt an orientation; invariance to small rotations locally orthogonal to it should be affected;

same (but orthogonal) for expansions;

One of the main predictions is that visual areas are involved in representing different geometric
transformations. Furthermore the *rough* sequence should be: V1 for translations, V2 for trans-
lations and scale and rotations, V4 for affine (mainly scale). The idea is to use Glass patterns
and have subjects look at them through an aperture (a circle). First in the fovea. I expect that if
the aperture is too small nothing can be seen. At some point translations will be detectable but
not rotations or scaling. Making the aperture larger should allow detection and discrimination
of rotations and scalings (not sure which one thirst). First we should check this in the fovea.
If this works, then we should try the same threshold discrimination experiment at a couple of
eccentricities and plot, as a function of eccentricity, the minimum aperture for which translations
and rotations and scaling can be first detected. The ideal figure is enclosed (we assume we know
how receptive field size grows from V1 to V2 etc as a function of eccentricity). This of course is
a dream (it would suggest that areas are involved in transformation and localize which trans-
formation in which area). Even if true it is not clear that V1, v2 etc are the bottleneck for the
psychophysics (conscious perception?). This is a big extra assumption that has little to do with
the theory.
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Large dperture~V4: rotations and scalings

aperture~V2: translations and rotations

Small aperture~V1: translations

FIGURE 28. Conjecture on threshold perception of type of transformation for Glass pat-
terns as a function of eccentricity and aperture.
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