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Cadieu C, Kouh M, Pasupathy A, Connor CE, Riesenhuber M,
Poggio T. A model of V4 shape selectivity and invariance. J
Neurophysiol 98: 1733-1750, 2007. First published June 27, 2007,
doi:10.1152/jn.01265.2006. Object recognition in primates is medi-
ated by the ventral visual pathway and is classically described as a
feedforward hierarchy of increasingly sophisticated representations.
Neurons in macaque monkey area V4, an intermediate stage along the
ventral pathway, have been shown to exhibit selectivity to complex
boundary conformation and invariance to spatial translation. How
could such a representation be derived from the signals in lower visual
areas such as V1? We show that a quantitative model of hierarchical
processing, which is part of a larger model of object recognition in the
ventral pathway, provides a plausible mechanism for the translation-
invariant shape representation observed in area V4. Simulated model
neurons successfully reproduce V4 selectivity and invariance through
a nonlinear, translation-invariant combination of locally selective
subunits, suggesting that a similar transformation may occur or
culminate in area V4. Specifically, this mechanism models the selec-
tivity of individual V4 neurons to boundary conformation stimuli,
exhibits the same degree of translation invariance observed in V4, and
produces observed V4 population responses to bars and non-Cartesian
gratings. This work provides a quantitative model of the widely
described shape selectivity and invariance properties of area V4 and
points toward a possible canonical mechanism operating throughout
the ventral pathway.

INTRODUCTION

Visual object recognition is a computationally demanding
task that is frequently performed by the primate brain. Primates
are able to discriminate and recognize objects under a variety
of conditions, such as changes in position, rotation, and illu-
mination, at a level of proficiency and speed that is currently
unmatched by engineered systems. How the primate brain
achieves this level of proficiency has largely been unexplained,
but it seems clear that the computations employed must
achieve both selectivity and invariance. In light of this com-
putational requirement, neurons in visual area V4 have been
shown to exhibit responses that are both selective for complex
stimuli and invariant to spatial translations (Desimone and
Schein 1987; Freiwald et al. 2004; Gallant et al. 1996; Ko-
batake and Tanaka 1994). Moreover, visual area V4 is likely to
play a critical role in object recognition: i.e., a lesion in this
area results in the impairment of shape perception and attention
(De Weerd et al. 1996; Gallant et al. 2000; Girard et al. 2002;
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Merigan and Pham 1998; Schiller 1995; Schiller and Lee
1991).

Area V4 lies in the middle of the ventral pathway, which is
one of two major cortical pathways that process visual infor-
mation and which has been closely linked to object recognition
by a variety of experiments (for a review, see Ungerleider and
Haxby 1994). Several studies have explored and described the
representations at various stages along the ventral pathway
(Kobatake and Tanaka 1994). These studies have shown that
the responses of neurons in lower visual areas, such as primary
visual cortex (V1), and higher visual areas, such as inferotem-
poral (IT) complex, explicitly represent features or information
about visual form. Neurons in the early stages of the ventral
pathway in V1 have small receptive fields and are responsive
to simple features, such as edge orientation (De Valois et al.
1982; Hubel and Wiesel 1962), whereas neurons far along the
pathway in IT have large receptive fields and can be selective
for complex shapes like faces, hands, and specific views of
other familiar objects (Gross et al. 1972; Hung et al. 2005;
Logothetis et al. 1995; Tanaka et al. 1991). Neural response
properties in area V4 reflect its intermediate anatomical posi-
tion. V4 receptive field sizes average four to seven times those
in V1 but are smaller than those in IT (Desimone and Schein
1987; Kobatake and Tanaka 1994). Many V4 neurons are
sensitive to stimulus features of moderate complexity (Desi-
mone and Schein 1987; Freiwald et al. 2004; Gallant et al.
1996; Gawne and Martin 2002; Kobatake and Tanaka 1994;
Pasupathy and Connor 1999, 2001; Pollen et al. 2002).

Previously, Pasupathy and Connor (1999, 2001) provided a
quantitative, phenomenological description of stimulus shape
selectivity and position invariance in area V4. They demon-
strated that a subpopulation of V4 neurons, screened for their
high firing rates to complex stimuli, is sensitive to local
modulations of boundary shape and orientation (Pasupathy and
Connor 1999). The responses of these neurons can be de-
scribed as basis function-like tuning for curvature, orientation,
and object-relative position of boundary fragments within
larger, more complex global shapes (Pasupathy and Connor
2001). This tuning is relatively invariant to local translation. At
the population level, a global shape may be represented in
terms of its constituent boundary fragments by multiple peaks
in the population response pattern (Pasupathy and Connor
2002). Brincat and Connor showed that V4 signals for local
boundary fragments may be integrated into more complex
shape constructs at subsequent processing stages in posterior
IT (Brincat and Connor 2004, 2006).

Physiological findings in V4 and other areas of the ventral
stream have led to a commonly held belief about how object
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recognition is achieved in the primate brain and specifically
how selectivity and invariance could be achieved in area V4.
Hubel and Wiesel first recognized selectivity and invariance by
probing neurons in cat area 17 with Cartesian gratings and
oriented bars. They found that some cells (classified as “sim-
ple”) exhibited strong phase dependence, whereas others (clas-
sified as “complex”) did not. Hubel and Wiesel proposed that
the invariance of those complex cells they described could be
formed by pooling together simple cells with similar selectiv-
ities but with translated receptive fields (Hubel and Wiesel
1962, 1965). Perrett and Oram (1993) proposed a similar
mechanism within IT to achieve invariance to any transforma-
tion by pooling afferents tuned to transformed versions of the
same stimuli. Based on these hypotheses, quantitative models
of the ventral pathway have been developed (Fukushima et al.
1983; Mel 1997; Riesenhuber and Poggio 1999; Serre et al.
2005, 2007a) with the goal of explaining object recognition.
The V4 model presented here is part of a model (Serre et al.
2005, 2007a) of the entire ventral pathway. Within this frame-
work, we sought to explain the observed response characteris-
tics of V4 neurons described in Pasupathy and Connor (2001)
(selectivity for boundary fragment conformation and object-
relative position and invariance to local translations) in terms
of a biologically plausible, feedforward model of the ventral
pathway motivated by the computational goal of object recog-
nition.

Our V4 model shows that the response patterns of V4
neurons described in Pasupathy and Connor (2001) can be
quantitatively reproduced by a translation-invariant combina-
tion of locally selective inputs. Simulated responses corre-
spond closely to physiologically measured V4 responses of
individual neurons during the presentation of stimuli that test
selectivity for complex boundary conformation and invariance
to local translation. The model provides a possible explanation
of the transformation from lower level visual areas to the
responses observed in V4. Model neurons can also predict
physiological responses to stimuli that were not used to derive
the model, allowing for comparison with other independent
experimental results. The model neurons and their correspond-
ing V4 neuron population may be interpreted on a geometric
level as boundary conformation filters, just as V1 neurons can
be considered edge or orientation filters.

METHODS
Model of V4 shape representation

The model is motivated by a theory of object recognition (Riesen-
huber and Poggio 1999; Serre et al. 2005, 2007a) and its parameters
that are specific to V4 incorporate neurophysiological evidence (Pa-
supathy and Connor 2001). These considerations motivate four major
aspects of the model. First, the architecture of the model is hierarchi-
cal, reflecting the anatomical structure of the primate visual cortex
(Felleman and Van Essen 1991). Second, the main computations are
feedforward, as suggested by results of rapid categorization/recogni-
tion experiments, such as (Hung et al. 2005; Thorpe et al. 1996).
Third, the V1-like layers of the model are composed of orientation-
tuned, Gabor-filtering units that match observed physiological evi-
dence in V1 (Serre et al. 2005). Finally, two computations are
performed in alternating layers of the hierarchy, mimicking the
observed, gradual build-up of shape selectivity and invariance along
the ventral pathway. A software implementation of the full model of
the ventral pathway is available at http://cbcl.mit.edu.
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The key parts of the resulting V4 model are summarized schemat-
ically in Fig. 1. It comprises four layers: S1, C1, S2, and C2. Each
layer contains either “S” units performing a selectivity operation on
their afferents or “C” units performing an invariance operation on
their afferents. The lower S1, CI, and S2 units of the model are
analogous to neurons in the visual areas V1 and V2, which precede V4
in the feedforward hierarchy (the role of V2 and the issue of anatom-
ical correspondence for the S2 layer are considered in DISCUSSION). A
single C2 unit at the top level of the hierarchy models an individual
V4 neuron’s response.

Our V4 model is consistent with several other quantitative and
qualitative models of V4 (e.g., Gallant et al. 1996; Li 1998; Reynolds
et al. 1999; Wilson and Wilkinson 1998), where several orientation-
selective afferent units are combined with nonlinear feedforward
operations, often involving inhibitory elements. Such models have
been successful in describing and explaining different specific phe-
nomena, such as texture discrimination (Wilson and Wilkinson 1998),
contour integration (Li 1998), or attentional effects (Reynolds et al.
1999), occurring in or around V4. Our model differs and extends these
previous descriptions in a number of ways. First, in our model the role
of area V4 is part of a framework that attempts to explain the entire
ventral pathway at a computational and quantitative level. Second, our
model not only attempts to explain experimental findings but also
attempts to explain how V4 responses could be computed from the
known properties of earlier stages within the ventral pathway. Third,
our model involves two stages of computation to account for the
selectivity of V4 neurons to complex stimuli and their invariance to
visual translations.

Operations

The model has two main operations: the selectivity operation
and the invariance operation. Selectivity is generated by a bell-
shaped, template-matching operation on a set of inputs from the
afferent units. A normalized dot product followed by a sigmoid
function is used as a biologically plausible implementation of the
selectivity operation. This operation can be implemented with
synaptic weights and an inhibitory mechanism (Poggio and Bizzi
2004; Serre et al. 2005). The response, r, of a selectivity unit (i.e.,
an S2 unit) is given by

Ewixi

i

= — | 1
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where x; is the response of the ith afferent unit, w; is the synaptic
weight of the ith afferent, and the sigmoid function g(u) is given by

s
1 + exp(—a(u — B))

The sigmoid parameters, o and 3, determine the steepness of tuning,
and s represents the maximum response of the unit. A small number
k (0.0001) prevents division by zero. The divisive normalization in
Eq. I can arise from lateral or feedforward shunting inhibitions, and
it is closely related to the inhibitory elements in other models of V4
[e.g., center-surround inhibition in Wilson and Wilkinson (1998) and
especially the biased-competition model formulation in Reynolds et
al. (1999)]. The resulting function is selective to a conjunction of the
input activity and is functionally similar to a Gaussian tuning function.
While similar results could be obtained with a Gaussian tuning
function, it is not clear how a Gaussian function could be implemented
directly with neural circuits. Hence the preceding functional form was
chosen for its biophysical plausibility and is also used in the full
model of Serre et al. (2005).

The invariance operation is implemented by the maximum
function. The maximum response of afferents with the same

glu) = 2)
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FIG. 1. Model of V4 shape representation. Our model of V4 (left) is part of an extensive theory of object recognition (right) dealing with the computations
and neuronal circuits in the feedforward pathway of the ventral stream in primate visual cortex (Riesenhuber and Poggio 1999; Serre et al. 2005). The response
of a C2 unit (left top) is used to model the responses of individual V4 neurons and is determined by the preceding layers of units, corresponding to earlier stages
of the ventral pathway before area V4. The build-up of selectivity and invariance is implemented by the alternating hierarchical layers of “simple” S units,
performing a selectivity operation, and “complex” C units performing an invariance operation. The designation of simple and complex follows the convention
of distinguishing between the orientation-tuned, phase-dependent simple cells and the translation-invariant complex cells of V1 (Hubel and Wiesel 1962, 1968).
Because V4 neurons exhibit both selectivity for complex shapes and invariance to local translation, V4 neurons are modeled with the responses of C2 units by
the combination of translated copies of S2 unit afferents with identical selectivity, but shifted receptive fields, following the same construction principle as in
S1 and C1 layers. The lower S1 and C1 units of the model are analogous to neurons in area V1. In the feedforward direction, the image is processed by simple
V1-like S1 units that send efferent projections to complex V1-like C1 units (for clarity, only a subset of C1 units are shown). S2 units receive input from a specific
combination of C1 unit afferents and are selective for a particular activation of those inputs. Finally, the C2 unit pools over shifted S2 units. The resulting C2
unit produces a high response to a specific stimulus and is invariant to the exact position of the stimulus within the receptive field (the full receptive field spans
the union of the receptive fields of S1 units). For different, nonoptimal stimuli, the C2 response falls off as the afferent activity deviates from the optimal pattern.
Most parameters in the model are fixed, except for the C1 and S2 connectivity (indicated by shaded rectangular region), which is varied to fit the individual neural
responses. Details of the model implementation and the fitting procedures can be found in METHODS.

selectivity, but translated or scaled receptive fields, produces
responses that are invariant to translation or scale. An approximate
maximum operation, known as softmax, can also be performed by
a normalized dot product neural circuitry similar to the selectivity
operation (Serre et al. 2005; Yu et al. 2002). In the simulations
described here, we used the maximum operation over afferent
inputs instead of the softmax.

X y? 2
h(py, p) = eXP(* pyha 20_%>C0S<7u - qS)

x=p;cos 0 + p,sin 0,
Yy = —p;sin 6 + p, cos 0,

(€))

where p, and p, indicate the coordinate indices centered on the S1
unit’s receptive field and range between —m and , 6 gives the
orientation of the filter, and ¢ gives the phase offset. For all S1 filters
the parameters were set to: A = 2.1, o, = 27/3, o, = 27/1.8, and
¢ = 0. The responses of S1 units are the normalized dot product
of the Gabor filter and the image patch within the receptive field.
The sigmoid nonlinearity is not used in the S1 selectivity function.
This results in a model of simple V1 neurons that is similar to that
presented in Carandini et al. (1997) and Heeger (1993). S1 re-
sponses were rectified by taking their absolute value, which is

S1 and CI layers

The selectivity and invariance operations are performed in
alternating layers (see Fig. 1): S1, C1, S2, and C2. In the feedfor-
ward direction, the pixels of the gray level valued image are
processed by S1 units that correspond to “simple” cells in V1.

They have Gabor receptive field profiles with different sizes and
four orientations (0, 45, 90, and 135°). The S1 filter, A, is given by
the Gabor function

equivalent to having rectified S1 units of both signs project to the
same efferent units. C1 units, which correspond to complex V1
cells, perform the invariance operation (maximum function) over
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S1 units with identical selectivity (i.e., orientation) but slightly
shifted or scaled receptive fields. As a result of such construction,
C1 units have orientation selectivity with larger receptive fields
than S1 units within which we observe translation and scale
invariance, similar to complex V1 cells.

Three different spatial pooling ranges over S1 units are used to
create C1 units with varying receptive field sizes, as observed in V1
(Hubel and Wiesel 1962, 1968). The S1 and C1 parameters are fixed
throughout all simulations and are listed in Table 1. The receptive
fields of adjacent C1 units (with the same size) overlap by 50%. The
parameters for S1 and C1 units have been chosen to reflect experi-
mental findings (e.g., receptive field sizes, orientation and spatial
frequency tuning, differences between spatial frequency bandwidth
between simple and complex cells, etc.) about V1 neurons (De Valois
et al. 1982; Schiller et al. 1976; Serre et al. 2005).

S2 and C2 layers

The same construction principle in S1 and C1 is repeated in the next
two layers, S2 and C2, and the parameters are given in Table 1. S2 units
perform the selectivity operation on their C1 afferents, generating selec-
tivity for features or shapes more complex than just orientation selectiv-
ity. Within the receptive field of each S2 unit, there are C1 units with
three different receptive field sizes. The C1 units with the smallest
receptive field size span the S2 receptive field in a 4 X 4 array, whereas
C1 units with larger receptive field sizes span the S2 receptive field in 3 X
3 or 2 X 2 arrays. Therefore within each S2 receptive field there are 29
[(2 X 2)+ (3 X3)+ (4 X 4)] spatial locations, each with units at four
different orientations, resulting in a total of 116 (29 X 4) potential C1
units that could provide an input to an S2 unit. A small subset of these 116
C1 units is connected to each S2 unit, and different combinations of C1
subunits produce a wide variety of complex shape selectivities. The
selection of which C1 subunits connect to an S2 unit, their connection
strengths, and the three sigmoid parameters in Eq. 2 are the only
parameters fit to a given V4 neuron’s response.

The top level C2 unit, which corresponds to a V4 neuron, performs
the invariance operation on the afferent projections from the S2 layer.
Because V4 neurons exhibit both selectivity for complex shapes and
invariance to local translation, V4 neurons are likely to combine
translated copies of inputs with the same, but shifted, selectivity, just
like the construction of a V1 complex cell. According to experimental
studies (Desimone and Schein 1987; Gallant et al. 1996; Pasupathy
and Connor 1999, 2001), V4 neurons maintain selectivity to transla-
tions of ~0.5 times the classical receptive field size. To match these
experimental findings, a C2 unit receives input from a 3 X 3 spatial
grid of S2 units with identical selectivity properties, each shifted by
0.25 times the S2 receptive field (i.e., 1 C2 unit receives inputs from
9 S2 units). As a result, the C2 unit adopts the selectivity of its afferent
S2 units to a particular pattern evoked by a stimulus in C1 and is
invariant to the exact position of the stimulus. The C2 parameters,
controlling the receptive field size and the range of translation invari-
ance, are fixed throughout all the simulations.
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In summary, our model of V4 is composed of hierarchical layers of
model units performing feedforward selectivity or invariance opera-
tions. Most of the parameters are fixed to reasonable estimates based
on experimental data from areas V1 and V4. To model a particular V4
neuron, only the parameters governing the connectivity between C1
and S2 layers, as indicated by the shaded rectangular region in Fig. 1,
are found according to the fitting technique described in the Fitting
model parameters section.

The current version of the model (Serre et al. 2005) is an extension
of the original formulation (Riesenhuber and Poggio 1999) in three
ways: the optimal activation patterns for S2 units are more varied to
account for the diverse selectivity properties measured in V4, the
tuning operation for the S2 layer has a more biologically plausible
form, Eq. I, and the max-pooling range for the C2 layer is set to match
the invariance properties of V4 neurons. These changes were natural
and planned extensions of the original model. Further information can
be found in (Serre et al. 2005). The full version of the model (Serre et
al. 2005, 2007a) has additional layers above C2 that are comparable to
the higher areas of the visual cortex like posterior and anterior
inferotemporal cortex and prefrontal cortex, and complete the hierar-
chy for functional object recognition. The full model also sets the
tuning of the S2 and S3 units with an unsupervised learning stage
using thousands of natural images. These modifications do not change
the results of the analysis in (Riesenhuber and Poggio 1999) of
responses of neurons in IT (Cadieu et al. 2004).

Physiological data

Using our model of V4, we examined the electrophysiological
responses of 109 V4 neurons previously reported in Pasupathy and
Connor (2001). The stimulus set construction and the physiological
methods are fully described in Pasupathy and Connor (2001). Briefly,
the stimulus set was designed to be a partial factorial cross of
boundary conformation values (sharp to shallow convex and concave
curvature) at 45°-interval angular positions (relative to object center).
The factorial cross is only partial because a complete cross is geo-
metrically impossible without creating boundary discontinuities that
would result in irregular shapes (for example, a closed contour shape
cannot be generated by using concave curvatures only). Responses of
individual neurons were recorded from parafoveal V4 cortex of
awake, fixating monkeys (Macaca mulatta) using standard electro-
physiological techniques. The response to each stimulus shape during
a 500-ms presentation period was averaged across three to five
repetitions. For the analyses presented here, each neuron’s responses
across the entire stimulus set were normalized to range between 0
and 1.

Fitting model parameters

For each V4 neuron, we wanted to determine parameters within the
model that would produce matching responses to that neuron’s selec-
tivity and invariance profile. Although a number of parameters could

TABLE 1. Model parameters

SCALE S1 RF C1 RF C1 SHIFT C1 GRID S2 RF S2 SHIFT S2 GRID C2 RF
1 54,60 80 40 2X2
2 40,45 60 30 3X3 120 30 3X3 180
3 32,36 48 24 4X4

The S1 and C1 layers are broken down into three spatial scales (1st column). The receptive field (RF) sizes of S1 units vary across spatial scales (2nd column,
measured in pixels). Within each spatial scale, CI units receive input from S1 units with 2 different RF sizes (to achieve a small degree of scale invariance) and
with different spatial locations (to achieve translation and phase invariance). The resulting RF sizes of CI units are indicated in the 3rd column. Within each spatial
scale, CI units form spatial grids with the center of adjacent CI receptive fields shifted by the amount indicated in the 4th column. In the S2 layer, S2 units receive
input from all 3 spatial scales. The CI grid sizes for each spatial scale span the same range of space (120X120 pixels), giving S2 units an identical RF size. S2
units form a 3X3 grid with adjacent S2 units shifted by 30 pixels. The top layer C2 unit has a RF size of 180 pixels. In the model, 32 pixels correspond to ~1°

of visual angle.
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be adjusted to accomplish this goal, the selectivity of a C2 unit, which
corresponds to a V4 neuron, is most dependent on the spatial arrange-
ment and synaptic weights connecting C1 units to the S2 units
(modifying other parameters had little effect on the level of fit, see
Increasing the parameter space). Furthermore, the model layers
before S2 were not adjusted because they are considered analogous to
representations in V1 and were not the focus of this study. The
invariance operation at the C2 layer was not adjusted because exper-
imental results indicate that translation invariance over measured V4
populations is highly consistent (Desimone and Schein 1987; Gallant
et al. 1996; Pasupathy and Connor 1999, 2001) and because the
experimental measurements modeled here do not include sufficient
stimuli at different translations. Therefore the fitting algorithm deter-
mined the parameters of the selectivity operation at the S2 layer while
holding all other parameters fixed (the fitted parameters within the
overall model are indicated by the shaded box in Fig. 1, left, labeled
as “parameter fitting”). Specifically, these parameters included the
subset of C1 afferents connected to an S2 unit, the connection weights
to those C1 afferents, and the parameters of the sigmoid function that
nonlinearly scaled the response values. For a given C2 unit, the
parameters for all 3 X 3 afferent S2 units were identical to produce
identical tuning over translation.

Because the model’s hierarchy of nonlinear operations makes
analytical solutions intractable, we used numerical methods to find
solutions. For each C2 unit, we needed to determine the set of Cl
subunits connected to the S2 units, the weights of the connections, and
the parameters of the sigmoid function. Determining the subset of C1
subunits to connect to an S2 unit is an NP-complete problem, and we
chose the heuristic based, forward selection algorithm, greedy search
to find a solution (Russell and Norvig 2003). Although we could have
applied other methods for solving NP-complete problems, we chose
greedy search for its simplicity and for its efficacy in this problem
domain. Figure 2 shows an overview schematic of the forward
selection fitting procedure. The search was initialized by evaluating all
possible combinations of two subunits taken from the 3 X 3 C1 grid
size. At each step within the search we determined the parameters for
each C1 subunit combination using gradient descent in parameter
space, which included the C1 weights and the sigmoid parameters, to
minimize the mean squared error between the experimentally mea-
sured V4 response and the C2 unit’s response (note that under a
probabilistic interpretation, minimizing the mean squared error im-
plies a Gaussian noise distribution around the measured responses).
Within each iteration step of the greedy search, the combination of n
C1 units producing lowest mean squared error between the experi-
mental V4 measurements, and the model responses was selected as the
winner. In the next iteration step the algorithm searched over every
possible combination of n + 1 C1 units to find a better fit (the winning
configuration from the previous iteration plus an additional C1 unit
not previously selected).

Depending on the aspect of the model we wished to analyze, we
determined the number of C1 subunits by one of two methods. The
first method was used to find a single model for each V4 neuron (as
in Figs. 3 and 4) and used cross-validation to mitigate overfitting. In
this method, the number of subunits was set to the minimum number
of units, between 2 and 25, that minimized the average testing error
over a sixfold cross-validation set to within 1% of the absolute
minimum. An n-fold cross-validation divides the dataset into n equal-
sized randomly selected subsets, trains the model on n — 1 of the
subsets, and predicts the response on the remaining subset. This is
repeated n times, each time predicting a different subset (see supple-
mental materials figure S1' for an example of the training and testing
errors as a function of the number of subunits for each fold). Subse-
quently, the best fitting C2 unit with this number of subunits was
found over the entire dataset. For each C2 unit, we limited the
maximum number of subunits to 25.

! The online version of this article contains supplemental data.
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FIG. 2. Schematic of the model fitting procedure. The response of each V4
neuron was fit with a model C2 unit by determining the parameters between the
C1 layer and the S2 layer (see box in Fig. 1, parameter fitting). Because the
response of C2 units is highly nonlinear and an analytic solution is intractable,
we used numerical methods to find solutions. For each model fit, we deter-
mined the set of C1 subunits connected to the S2 units, the weights of the
connections, and the parameters of the sigmoid function. To determine the
subset of C1 subunits, we used a forward selection algorithm, greedy search,
to find a solution. The search was initialized (leff) by selecting 2 C1 subunits
to include in the selectivity function. For each selection of 2 subunits, the
parameters of the selectivity function were adjusted using gradient descent in
parameter space to minimize the mean squared error between the V4 neuron’s
measured response and the model C2 unit’s response. The C1 subunit config-
uration that achieved the lowest mean squared error was then used for the next
iteration of the greedy search. The search then continued (middle) by adding an
additional C1 subunit to the best configuration found in the previous iteration.
The search was stopped (right) to produce a final model. One of 2 stopping
criteria was chosen based on the desired analysis of the final model. To find a
single model for each V4 neuron, the search was halted once the average
testing error over a sixfold cross-validation set reached within 1% of the
absolute minimum. To test the model’s ability to generalize to stimuli outside
the training set, the search was stopped once the mean squared error on the
training set decreased by <1% or once 25 C1 subunits were found. See Fitting
model parameters for further discussion.

To test the model’s ability to generalize to stimuli outside the training
set, we used a second method for determining the number of C1 subunits
found in the fitting procedure. We split the stimulus set into randomly
selected training and testing sets containing 305 and 61 stimulus-response
pairs, respectively. The number of C1 subunits was determined on the
training set by adding subunits in the greedy search until the error
between the C2 unit’s response and the V4 neuron’s response decreased
by <1% or once 25 C1 subunits were found. We then simulated the
resulting C2 unit’s response on the test set, measuring the model’s ability
to generalize to stimuli outside the training set (as in Fig. 5). This method
is often referred to as validation.

In summary, the model of a V4 cell is derived from a parameter
space consisting of 119 free parameters (synaptic weights for 116 C1
units and 3 sigmoid parameters). However, for fitting the responses of
each V4 neuron over 366 stimuli, a small subset of these parameters
is selected based on cross-validation criteria. Over the population of
V4 neurons examined, the median number of parameters chosen was
13, with a minimum of 5 (2 + 3) and a maximum of 28 (25 + 3).
Notice that even with a large number of possible parameters our
model is still highly constrained by its structure.

RESULTS
Selectivity for boundary conformation

C2 units in the model can reproduce the selectivity of V4
neuronal responses. Model neurons reproduce the variety of
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Comparison of model responses to a V4 neuron tuned to convex curvature. A, left: the selectivity of a V4 neuron over 366 boundary conformation

stimuli is shown in order of decreasing response strength. The magnitude of the response is indicated by the gray scale (high response is darker). From the
inspection of the response profile, it is apparent that this neuron is selective for a high convexity, or a sharp angle protruding out, on the upper right side of a
stimulus. This is the same neuron that appears in Fig. 5 of Pasupathy and Connor (2001). Right: response of the C2 unit, modeling this V4 neuron’s response,
shown in the same stimulus order. A similar selectivity profile is observed. B: response of the V4 neuron is plotted against the model C2 unit’s response for each
stimulus. The goodness of fit, measured by the correlation coefficient, is 0.91 between this neuron and the model over the 366 boundary conformation stimuli.
C: configuration of C1 subunits, projecting to S2 model units, is shown schematically. The configuration and weights of C1 afferents determine the selectivity
of the S2 units and the resulting C2 unit. The locations and orientations of the C1 subunits are indicated by ellipses, and the strength of the synaptic weight is
indicated by gray scale. This particular C2 unit is composed of S2 units each of which combines 18 C1 subunits with 1 strong afferent pointing diagonally outward
in the upper right corner of the receptive field. This configuration is typical of C2 units that produce tuning to sharp curvature projections within the stimulus

space.

selectivity described previously in V4 (Pasupathy and Connor
2001), including selectivity to angular position and the curva-
ture of boundary fragments. Figure 3 compares the responses
of an example V4 neuron to the corresponding C2 unit. This
V4 neuron is selective for sharp convex boundary fragments
positioned near the upper right corner of a stimulus, as shown
in the response-magnitude ranked illustration of the stimuli in
Fig. 3A. The modeled responses correspond closely to the
physiological responses (coefficient of correlation r = 0.91,
explained variance * = 83%; note that fitting V4 neural
selectivity with a C2 unit is a more difficult problem than
fitting selectivity at the S2 level because the invariance oper-
ation, or pooling, of the C2 unit may cause interference
between the selectivities of translated S2 units). This type of
selectivity is achieved by a S2 configuration with 18 Cl1
subunits, shown schematically in Fig. 3C, which form a non-
linear template for the critical boundary fragments. The con-
figuration of the C1 subunits offers a straightforward explana-
tion for the observed selectivity. The C2 unit has a C1 subunit
at 45° with a high weight, oriented along the radial direction

(also at 45°) with respect to the center of the receptive field.
This subunit configuration results in selectivity for sharp pro-
jections at 45° within the stimulus set and is described by the
boundary conformation model as tuning for high curvature at
45° relative to the object center (see Comparison with the
curvature and angular position tuning model for an analysis of
the correspondence between C1 configurations and curvature
tuning).

C2 units can also reproduce selectivity for concave boundary
fragments. Responses of the second example neuron, Fig. 4,
exhibit selectivity for concave curvatures in the lower part of a
stimulus. Again, there is a strong correspondence between the
modeled and measured responses (r = 0.91, explained vari-
ance = 83%). In this example, selectivity was achieved by a S2
configuration with 23 oriented subunits, shown schematically
in Fig. 4C. Note that there are several separated subunits with
strong synaptic weights in the lower portion of the receptive
field at —45, 0, and 45° orientations; these correspond to
boundary fragments found in many of the preferred stimuli. In
general, the geometric configuration of oriented subunits in the
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FIG. 4. Comparison of model responses to a V4 neuron tuned to concave curvature. The selectivity of another example neuron in the same format as Fig.
3 is shown. A: this V4 neuron shows selectivity to boundary conformations with slightly concave curvature, or an obtuse angle, in the lower portion of the
receptive field. B: model C2 unit closely matches the V4 neuron’s response (r = 0.91). C: S2 configuration of the model is quite complex with 21 afferent C1
subunits. The group of dominant subunits, oriented at 45, 0, and —45° in the lower portion of the S2 receptive field, has a strong influence on the observed

selectivity.
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FIG. 5. Generalization of the model to stimuli outside of the training set.
The model is able to predict the response of V4 neurons to boundary
conformation stimuli not included in the training set. Using a sixfold
cross-validation methodology across the population of V4 neurons, a model
C2 unit was determined for each V4 neuron using a training set, and the
resulting model was used to predict the V4 neuron’s response to the testing
set. A histogram of correlation coefficients on the training (left) and testing
(right) sets are shown. Over the population, the median correlation coef-
ficients were 0.72 on the training set and 0.57 on the testing set. These
numbers are based on the averages over the sixfold cross-validation.

model closely resembles the shape of a critical region in the
stimuli that elicit high responses.

Testing population selectivity for boundary conformation

Model C2 units can successfully fit the V4 population
selectivity data and can generalize to V4 responses outside the
training set. For each V4 neuron, we divided the main stimulus
set randomly into two nonoverlapping groups (a training and a
testing set) in a standard cross-validation procedure (see METH-
ops). Figure 5 shows correlation coefficient histograms for
training and testing over the population of V4 neurons. The
median correlation coefficient between the neural data and the
C2 unit responses was .72 (explained variance = 52%) on the
training set, and 0.57 (explained variance = 32%) on the test
set over sixfold cross-validation splits of the dataset. However,
because the stimulus set is inevitably correlated, the test set
correlation coefficients are inflated. The full distributions of the
model parameters can be found in supplemental figure S2.

Much of the variance in V4 neuron responses may be
unexplainable due to noise or uncontrolled factors. Pasupathy
and Connor (2001) estimated the noise variance by calculating
the average expected squared differences across stimulus pre-
sentations. The estimated noise variance averaged 41.6% of the
total variance. Using this estimate, on the training set the model
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accounted for 89% of the explainable variance (r = 0.94) and
on the testing set the model accounted for 56% of the explain-
able variance (r = 0.75). Therefore a large part of the explain-
able variance is described by the model. This result indicates
that the model can generalize within the boundary conforma-
tion stimulus set.

Invariance to translation

The model not only matches V4 selectivity but also repro-
duces V4 translation invariance. Responses of V4 neurons are
invariant to translation (i.e., their selectivity is preserved over
a local translation range) as reported in many studies (Desi-
mone and Schein 1987; Gallant et al. 1996; Pasupathy and
Connor 1999, 2001). The population of C2 units used to fit the
population of V4 neurons reproduced the selectivity of those
V4 neurons, while still maintaining invariance to translation.
Selectivity and invariance are two competing requirements and
the model C2 units satisfy both requirements. The results in
Fig. 6 show that the built-in invariance mechanism (at the level
of C2) operates as expected, reproducing the observed trans-
lation invariance in the experimental data on the boundary
conformation stimuli. Figure 6A shows the invariance proper-
ties of the C2 unit from Fig. 3. Eight stimuli, which span the
response range, are sampled across a 5 X 5 grid of positions
with intervals equal to half the classical receptive field radius.
Not only does the stimulus that produces a high response at the
center of the receptive field produce high responses over a
range of translation, but more importantly, the selectivity is
preserved over translation (i.e., the ranking of the eight stimuli
is preserved over translation within a given range). Figure 6, B
and C, shows that the observed translation invariance of V4
neurons is captured by the population of C2 units. Because the
C2 units are selective for complex, nonlinear conjunctions of
oriented features and the invariance operation is based on
pooling from a discrete number of afferents, the translated
stimuli sometimes result in changes of selectivity. A few C2
units in Fig. 6B show that translated nonoptimal stimuli can
produce greater responses; but on average, as shown in Fig.
6C, optimal stimuli within a range of translation produce
stronger responses.

Responses to bar and grating stimuli

The model is capable of reproducing the responses of indi-
vidual V4 neurons to stimuli not determined by boundary
conformation, such as bars and gratings. The population of C2
units produces responses that are consistent with the general
findings that populations of V4 neurons show a wide range of
orientation selectivity and bandwidths, individual V4 neurons
exhibit multiple peaks in their orientation tuning curves, and
V4 neurons show a strong preference for polar and hyperbolic
gratings over Cartesian gratings.

To compute the orientation bandwidth of each C2 unit, the
orientation selectivity of each model unit was measured using
bar stimuli at various orientations (10° steps), widths (5, 10,
20, 30, and 50% of the receptive field size), and locations
within the receptive field. The orientation bandwidth of each
model C2 unit, the full width at half-maximum response, with
linear interpolation as in Fig. 6A of Desimone and Schein
(1987), was taken for the bar that produced the highest re-
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FIG. 6. Translation invariance of model neurons. C2 units are invariant
to translations, comparable to the invariance observed in V4. A, top: 8
different stimuli, which elicit a wide range of responses from the C2 unit
of Fig. 3, are shown; bottom: corresponding responses of this C2 unit are
shown. Each stimulus was presented at 25 positions on a 5 X 5 grid
(separated by half an S2 receptive field radius) centered on the C2 receptive
field, following Fig. 6A of Pasupathy and Connor (2001). The center
position in the 5 X 5 grid corresponds to the default presentation condition.
Note that selectivity is preserved over a range of translation. B: population
of 109 C2 units also shows invariance to translation and preserved selec-
tivity over translation. The responses of the 109 C2 units to the stimulus
that produced the highest response (optimal) and the stimulus that produced
the lowest response (nonoptimal) from the same set of 8 stimuli from A are
displayed. Each thin bar corresponds to the response of a C2 unit, averaged
along the orthogonal directions within the 5 X 5 grid, and the bars are
sorted according to the responses at the default presentation condition. The
x axes are in units of S2 receptive field size. C: this figure shows the
average, normalized responses to the stimuli that produced the highest
(optimal) and lowest (nonoptimal) responses out of the 8 shown in the rop
row of A, across 109 C2 units for each stimulus position. The selectivity is
generally preserved over translation. The responses to the optimal and
nonoptimal stimuli at the central position for each C2 unit are normalized
to be 1 and 0, respectively, so that each unit makes equal contribution to
this plot.
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sponse across location and orientation. The multimodal nature
of the orientation tuning curves was assessed using a bimodal
tuning index, Eq. 9 in David et al. (2006). To find the bimodal
tuning index, we first found the two largest peaks and the two
smallest troughs in the orientation tuning curve. The index is
computed by taking the ratio of the difference between the
smaller peak and larger trough, to the difference between the
larger peak and smaller trough. Orientation tuning curves with
only one peak have an index value of O and orientation tuning
curves with tuning peaks and troughs of equal size will have a
bimodal tuning index of 1.

Figure 7A provides a summary plot of orientation band-
widths measured for 97 model C2 units (of 109 C2 units, 97
had a response to a bar stimulus that was =10% of the
maximum response to the contour stimulus set). The distribu-
tion of orientation bandwidths covers a wide range that is
comparable to the physiologically measured range from Desi-
mone and Schein (1987) and David et al. (2006). The median
orientation bandwidth for the C2 population was 51.7°,
whereas the median found in Desimone and Schein (1987) and
David et al. (2006) was around 74°. The larger median orien-
tation bandwidth in the physiological measurements is a prod-
uct of the large portion of V4 cells found to be nonorientation
selective in the physiological population [32.5% of cells in
Desimone and Schein (1987) had orientation bandwidths
>90°] and the small portion of C2 units found with a similar
lack of orientation selectivity (~8% of C2 fits had orientation
bandwidths >90°). When only considering V4 cells with
orientation bandwidths <90°, Desimone and Schein (1987)
found that the median orientation bandwidth was 52°, similar
to the median of 51.7° over C2 fits. This discrepancy between
the two populations may be due to a selection bias in the
recordings of Pasupathy and Connor (2001), who selected cells
based on their tuning to complex shapes. For this reason, cells
with a lack of selectivity, those with orientation bandwidths
>90°, may not have been included in their recordings.

Individual orientation tuning curves also indicated that many
model C2 units were selective for multiple orientations. Such
multi-modal orientation tuning, as opposed to the unimodal
tuning in V1, is one of the characteristics of V4 neurons, and
it arises naturally in our model because each model unit is
composed of several differently oriented subunits. Although a
number of model units have more than two peaks in their
tuning curves, we computed bimodal tuning indices, which
characterize the deviation from the unimodal tuning behavior
(David et al. 2006). Figure 7B presents a summary plot of
bimodal tuning index for the 97 model C2 units that were
responsive to the bar stimuli. The overall range of the bimodal
index distribution in Fig. 7B is comparable with Fig. 5D in
David et al. (2006) and has a similar profile: a peak near zero
with a dramatic falloff as the bimodal index increases. The
median bimodal index over the population of C2 units was 0.12
and over the V4 population measured in David et al. (2006) the
median bimodal index was 0.09.

To test individual C2 units to grating stimuli, we used the
same 109 model C2 units fit to the V4 population and presented
three types of gratings: 30 Cartesian, 40 polar, and 20 hyper-
bolic gratings each at four different phases to reproduce the
stimulus set used in Gallant et al. (1996). The boundary
conformation stimuli produced an average response of 0.22
from 109 C2 units, whereas the polar and hyperbolic grating
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FIG. 7. Testing selectivity of C2 units to bars and gratings. We measured
the responses from a population of C2 units fit to the population of V4 neurons
from Pasupathy and Connor (2001), using bars and gratings. Three summary
plots are presented: A: orientation bandwidth; B: bimodal tuning index; and C:
tuning to Cartesian, polar, and hyperbolic gratings. A shows a histogram of
orientation bandwidths measured for 97 of the C2 units that showed significant
response to bar stimuli. The median orientation bandwidth for the C2 popu-
lation was 51.7°. B shows a histogram over bimodal tuning index for the same
97 model C2 units. The median bimodal indexes over the population of C2
units is 0.12. C shows a summary plot of all 109 model C2 units to Cartesian,
polar, and hyperbolic gratings. The grating stimuli, analysis procedure, and
plotting convention used in Gallant et al. (1996) are reproduced to asses the
selectivity to complex gratings. For each C2 unit, the maximum responses to
each grating class (Cartesian, polar, and hyperbolic) form a 3-dimensional
vector, normalized to unit length, and plotted in a 3-dimensional space with
each axis representing the response to a grating class (the viewpoint is oriented
so that the origin of the coordinate system is at the center, and the vector whose
responses are equal is pointing directly out of the page). The vector for each
model C2 unit is plotted as a circle with the size of the circle indicating the
magnitude of the highest response over all of the grating stimuli. The bias
toward polar and hyperbolic gratings, which is a characteristic previously
described in V4 (Gallant et al. 1996), indicates that for most C2 units, the
optimal stimulus was non-Cartesian. Our results show a stronger bias than
reported in (Gallant et al. 1996).
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stimuli produced an average response of 0.14 (1.0 is the
maximum measured response over the main boundary confor-
mation stimulus set). However, for 39% of the C2 units, the
most preferred stimulus was one of the grating stimuli and not
one of the boundary conformation stimuli. This result suggests
that some V4 neurons selective for curved object boundary
fragments might also show significantly higher responses to
grating stimuli and other complex patterns.

In correspondence with the report of a distinct group of V4
neurons that are highly selective for hyperbolic gratings (Gal-
lant et al. 1996), we also found individual C2 units within our
population highly selective for hyperbolic gratings. For exam-
ple the C2 unit used to model the V4 neuron in Fig. 3 showed
a strong preference for hyperbolic gratings, as its maximum
response over hyperbolic gratings, 0.90, was much greater than
the maximum responses over both polar gratings, 0.39, and
Cartesian gratings, 0.04.

The population of C2 units also reproduces previously mea-
sured V4 population response characteristics to gratings. The
distribution of grating class selectivity is shown in Fig. 7C.
Quantitatively, mean responses to the preferred stimulus within
each grating class were 0.004 for Cartesian, 0.160 for polar,
and 0.196 for hyperbolic, qualitatively matching the finding in
Gallant et al. (1996) that the population of V4 neurons they
measured is strongly biased toward non-Cartesian gratings.
Many of the C2 units produced a maximal response to one
grating class at least twice that of the other two classes: 1% for
Cartesian, 35% for polar, and 26% for hyperbolic gratings. The
reported experimental findings were 2, 11, and 10%, respec-
tively.

The C2 population tends to be more strongly responsive to
the non-Cartesian gratings than reported in Gallant et al.
(1996). This discrepancy may be due to different screening
processes used in the two experiments [V4 neurons in Pasu-
pathy and Connor (2001) were recorded only if they responded
to complex stimuli, and were skipped if they appeared respon-
sive only to bar orientation]. The C2 population also tends to
show less-selective responses between the polar and hyperbolic
gratings than the neural data as indicated by the concentrated
points near the polar-hyperbolic grating boundary in Fig. 7C.
An earlier modeling study (Kouh and Riesenhuber 2003)
suggests that a larger distance between the orientation-selective
subunits can increase the variance of responses to these non-
Cartesian grating classes, but this parameter was fixed in all of
our simulations.

Model architecture, complexity and limitations

TWO-LAYER MODEL ARCHITECTURE. Our model of V4, as
shown in Fig. 1, uses a C2 layer to explicitly implement
translation invariance and localized S2 units to achieve selec-
tivity. Such a construct is a consistent part of a canonical
architectural principle of the full model of the ventral pathway
(Fig. 1), aimed at gradually building up selectivity and invari-
ance for robust object recognition. Could S2 units, receiving
input directly from complex V1-like neurons, reproduce both
selectivity and invariance exhibited by V4 neurons? To test this
hypothesis, responses to a stimulus set derived from the mea-
surements of a V4 neuron that tested both the neuron’s selec-
tivity and invariance were fit with four different models: C2
unit, the full C2 unit implementation that pools locally selec-
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tive S2 units; S2 unit, a single S2 unit identical to those used in
the full C2 model; Control I, a single S2 unit modified to
receive inputs from spatially localized C1 units collectively
spanning the receptive field of the V4 neuron; and Control 2,
a single S2 unit modified to receive input from nonspatially
localized C1 units that achieved translation invariance over the
entire V4 receptive field. For control 1, the population of Cl
units included the entire population of C1 units used in the full
C2 model. For control 2, the population of C1 units was created
by performing the invariance operation (maximum operation)
over C1 units spanning the entire receptive field with identical
orientation and bandwidth.

Each model was evaluated on a stimulus set that tested both
selectivity and invariance. A 5 X 5 translation grid, with each
stimulus translated by 50% of the classical receptive field
radius and identical to that used in Pasupathy and Connor
(2001), was used to create a total of 9,150 stimuli (main
stimulus set X 25 translated positions). The corresponding V4
response to all these stimuli was derived from the selectivity
response of a single V4 neuron by replicating the response to
the centered stimulus over a grid matching translation invari-
ance range typical of the population of V4 neurons (in this case
the central 3 X 3 grid). Note that this represents an idealized
response set and actual V4 responses are slightly more varied
over translation, see Fig. 6A from Pasupathy and Connor
(2001). Each model was fit to this stimulus set using the same
cross-validation fitting procedure described in Fitting model
parameters within METHODS. This allowed us to quantitatively
measure the selectivity and invariance of each model using a
correlation coefficient on the testing set. We also qualitatively
assessed the degree of translation invariance for each model.

The C2 unit was the model that best matched V4 selectivity
and invariance. For each cross-validation fold, we computed
the correlation coefficient on the testing set for each model as
a function of the number of subunits, shown in Fig. 8A.
Clearly, the C2 unit reaches a higher correlation coefficient
than the other models and produces better fits over the range of
subunits tested. The test set correlation coefficient averaged
over the cross-validation folds (using the subunit stopping
criteria of training error decreasing by <1%) for the C2 unit
was 0.79 = 0.014 (mean = SD; explainable variance = 62%),
whereas the correlation coefficients for the S2 unit, control 1,
and control 2 were 0.61 = 0.022 (37%), 0.65 = 0.015 (42%),
and 0.35 = 0.013 (12%), respectively. For this stopping crite-
rion, the average number of subunits for each model was 16.0,
7.2, 10.3, and 2.7, for the C2 unit, the S2 unit, control 1, and
control 2, respectively.

A qualitative demonstration of translation invariance also
shows that only the C2 unit maintains selectivity over transla-
tion. Figure 8 B shows four stimuli that span the range of the V4
neuron’s response (Ist column), the derived V4 response pro-
file for each stimulus over the 5 X 5 translation grid (2nd
column), and the response of each model to the same stimuli
(remaining columns). The derived V4 response shows transla-
tion invariance over a limited range (the central 3 X 3 portion
of the translation grid) and maintains the selectivity profile
over translation (i.e., for each translation the stimulus ranking
is preserved). Only the C2 unit shows both the required range
of translation invariance and maintains the stimulus ranking.
The S2 unit produces a high degree of variation across trans-
lation and fails to maintain the stimulus ranking. Control 1
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Comparison of model architectures for selectivity and invariance. Our V4 model architecture, which consists of a C2 layer to explicitly implement

translation invariance and a layer of localized S2 units to achieve selectivity, is necessary to reproduce both the selectivity and invariance characteristics of V4.
We compared the selectivity and invariance properties of 4 model architectures: C2 unit, the full C2 unit implementation; S2 unit, a single S2 unit; control 1,
a single S2 unit modified to receive inputs from spatially localized C1 units; and control 2, a single S2 unit modified to receive inputs from nonspatially localized
C1 units. A: plots the correlation coefficients between the cross-validation testing set and each model’s response as a function of the number of C1 subunits (see
TWO-LAYER MODEL ARCHITECTURE for simulation details). B, first column: 4 stimuli that span the range of the V4 neuron’s response (normalized numerical values
are indicated by the numbers to the left of each stimulus). Second column: simulated response profile to each stimulus over the 5 X 5 translation grid. Remaining
columns: fit response of each model to the same stimuli. Note that the derived V4 response shows translation invariance over a limited range and maintains the
selectivity profile over translation (for each translation the stimulus ranking is preserved). Only the C2 unit shows both the required range of translation selectivity

and maintains the stimulus ranking.

does reproduce the stimulus ranking over the central translation
position, but fails to achieve translation invariance. Control 2’s
response maintains a high degree of translation invariance (the
underlying C1 population response is invariant to translation),
but it does not reproduce the stimulus ranking for any of the
translated positions.

These controls provide justification for our model architec-
ture of a two layer S2—C2 hierarchy to produce both selectivity
and invariance that matches the observed responses in V4.
Selectivity and invariance are in general competing require-
ments that are difficult to satisfy at the same time (Mel and
Fiser 2000). Therefore in our model, they are gradually built up
in alternating layers with separate operations for selectivity and
invariance. For V4, spatially localized selectivity units (S2
units) are pooled over position by C2 units to achieve selec-
tivity and invariance. This is one of the main computational
principles of our model of the ventral pathway (Fig. 1) (see
Riesenhuber and Poggio 1999; Serre et al. 2005). These control
experiments suggest that this mechanism may play a central
role in the computations performed by V4 neurons.

COMPLEXITY OF V4 NEURONS.  Based on our model, we sought to
estimate the complexity of the V4 neuron population. Figure 94
shows a distribution of the number of C1 afferent units found by
the cross-validation analysis (see METHODS). The results for pre-
dicting stimuli outside the training set, Fig. 5, are based on this
distribution of C1 subunits. The median number of C1 afferent
units found for the distribution was 13. In other words, a median
of 16 parameters (13 plus 3 parameters in the sigmoid function,
Eq. 2) were required to explain the measured V4 responses to the
boundary conformation stimulus set. Figure 9B shows the evolu-
tion of the correlation coefficients of the predicted responses for
each V4 neuron and their mean over the neurons. The mean
correlation coefficient for a given number of C1 afferents contin-
ues to improve all the way up to 25 C1 afferents. There was a
significant correlation of 0.47 (P < 0.001) between the mean
correlation coefficient and the number of C1 afferents (see sup-
plemental figure S3). This indicates that adding additional CI

afferents according to our methodology does not result in over-
fitting of the neural responses and, within the framework of our
model, that these additional C1 afferents are necessary for esti-
mating the complexity of V4 neurons. Our model predicts that V4
neurons are not homogeneous in their complexity, but span a
continuum in their selectivity to complex stimuli. This continuum
is illustrated by the S2 configuration diagrams of all 109 neurons
in Fig. 9C.

INCREASING THE PARAMETER SPACE. We tried to determine if
the overall conclusions drawn from our model were highly
dependent on the underlying S1-C1 hierarchy. While we did
find that it was possible to produce model C2 units with fewer
C1 afferents if the parameter space was more densely sampled,
we found that the conclusions of our analysis remained un-
changed. To demonstrate these points, we increased the num-
ber of S1 orientations from four to eight and placed a stricter
limit on the number of subunits (at most 10 C1 afferents per S2
unit). The resulting model achieves a similar level of fit to the
boundary conformation stimulus set with correlation coeffi-
cients of 0.71 (explainable variance = 50%) on the training set
and 0.56 (31%) on test set (see supplemental material Fig. S4
and compare with Fig. 5). The median number of C1 units used
for the fitting was eight (cf. 13 in Fig. 9A). The results were
also similar for translation invariance, responses to the grating
stimuli, and comparisons with the curvature model (qualita-
tively identical to Figs. 6, 7, and 10). The geometric configu-
rations with the extended C1 subunit types also show close
resemblance to the previous results. For instance, the new
configuration for the C2 unit in Fig. 3 is still composed of a
radially oriented subunit in the upper right corner, and the C2
unit in Fig. 4 is still composed of two widely separated C1
subunits in the lower part of the receptive field as shown in
supplemental material Fig. S4A. Because the number and
arrangement of subunits were largely unaffected, we concluded
that altering the complexity of the C1 layer would not affect the
descriptive power or conclusions of our model.
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FIG. 9. Complexity distribution of C2 units. A: varying number of afferent subunits is required to fit the 109 V4 neurons. Some C2 units had only a few
subunits, while others required >20. The median was 13. The number of subunits was chosen to achieve the minimum average test error over sixfold
cross-validation (see METHODS). A maximum of 25 subunits was used in the fitting. B: evolution of the correlation coefficients (on the test set of the
cross-validation) is shown along with the corresponding number of C1 afferent units. Individual C2 units are represented by each line, and based on the
cross-validation criteria, fewer than 25 subunits are used for the final fit. Models with 10 subunits produced an average correlation coefficient of 0.5 between
the model and the neural responses. C: S2 configurations for all 109 C2 units are shown in order of increasing number of afferents, illustrating that a population
of V4 neurons is likely to come in widely different configurations and combinations of afferent inputs.

LIMITATIONS OF THE MODELING FRAMEWORK. The specific C2
model units described here fail to capture some known aspects
of ventral stream visual responses. In general, the C2 model
units cannot easily be used to describe invariances or selectiv-
ities that are much more complex than those seen in V4. For
example, our present model C2 units could not capture the
degree of selectivity and invariance found in the responses of
neurons in inferotemporal cortex. Scale invariance is another
characteristic of visual processing that is not easily captured by
the currently formulated C2 units. However, it should be
possible to build a similar pooling mechanism over S2 units of
different scales to achieve scale invariance at the C2 level
(Riesenhuber and Poggio 1999). A detailed study of scale
invariance within V4 would provide additional constraints on
subsequent models.

In addition the model captures only a fraction of the re-
sponse variance in a portion of the V4 population we have
analyzed. We could not determine any clear pattern among the
responses of neurons that were fit poorly by the model.
Whereas these poor fits may be due to noise variance or distinct
functional populations of neurons within V4, they may also
represent a fundamental limitation of our model. Given the
current V4 data, it is unclear if nonlinear feedforward models
of this type will fundamentally fail at explaining initial V4
responses (without attentional modulation). To achieve a more
detailed understanding of V4, it will be necessary to use stimuli
that push the limits of known models. Taken together, these
limitations indicate that the current data on V4 do not provide
a clear distinction between the functional operation of V4 and
the model of visual processing we have described.

LIMITATIONS OF THE CURRENT FITTING FRAMEWORK. ~ One of the
main limitations of the current fitting framework is the stability
of the solution. In other words, for a given response profile of
a V4 neuron, the geometric configuration of the C1 subunits,
obtained by the fitting procedure, is underconstrained and not
guaranteed to be unique because there exist other configura-
tions that would yield a similar level of fit with the neural
response. However, most fitting results converged onto similar
geometric configurations (compare the configurations in Figs.
3C and 4C, with supplemental Fig. S4A). Regardless of the
exact solutions, our modeling approach provides an existence
proof that a model based on combining spatially localized
selectivity units can account for V4 tuning data. Our approach
does not require uniqueness, as finding several afferent combina-
tions that all can account for the experimentally observed tuning
and invariance data lead to this same conclusion.

COMPARISON WITH THE CURVATURE AND ANGULAR POSITION TUN-
ING MODEL One goal of our model is to understand how
curvature and angular position tuning could be achieved from
the known representations in lower visual areas. C2 units
provide a mechanistic explanation of V4 selectivity, whereas in
Pasupathy and Connor (2001), tuning functions on curvature
and angular position of the boundary fragments provide an-
other description of the response profiles of the recorded V4
neurons. Therefore we examined the correspondence between
the configurations of S2 afferents with the tuning functions for
curvature and angular position derived in Pasupathy and Con-
nor (2001). We compared C2 model fits with three aspects of
the 4D curvature and angular position tuning functions de-
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scribed in (Pasupathy and Connor 2001): the goodness of fit
(correlation coefficient), the peak locations of angular position,
and the degree of curvature.

Both C2 units and 4D curvature-angular position tuning
functions capture much of the response variance of V4 neu-
rons. The median training set correlation coefficients of the 2D
and 4D curvature-angular position tuning models were 0.46
and 0.57, respectively (see Pasupathy and Connor 2001 for a
description of these models). There is a high correspondence
between the correlation coefficients found for C2 units and the
curvature-angular position tuning fits (shown in Fig. 10A). This
may not be surprising, as both models produce tuning functions
in the space of contour segments that make up these stimuli.

We investigated the correspondence between the curvature-
angular position tuning and the parameters of model C2 units.
In many cases, there is an intuitive relationship between the
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geometric configuration of a C2 unit’s oriented C1 afferents
and the tuning parameters in curvature and angular position
space (i.e., Fig. 3C, concave curvature tuning, and Fig. 4C,
convex curvature tuning, show such correspondence at specific
angular positions). To quantitatively examine this relationship,
we examined the parameters at the S2 level and compared them
to the peak locations of angular position and the degree of
curvature found with the parameterized tuning functions. We
found that angular position tuning is closely related to the
weighted average of subunit locations, illustrated in Fig. 10B.
Because the receptive fields of S2 units are large in comparison
to C2 units (S2 RF radius = 0.75 X C2 RF radius), any spatial
bias in the C1 inputs to S2 units will create a spatial bias at the
C2 level. If this spatial bias is concentrated, the C2 unit will
have a “hot spot” in angular position space.

To compare model parameters with curvature tuning, we
considered two main cases based on the criterion of whether
there was one dominant subunit or many. If the second largest
weight was <70% of the largest weight, we considered the
strongest subunit only (Fig. 10C). Otherwise, we considered
the largest two subunits (Fig. 10D). We further divided the
curvature tuning comparison into two cases based on the
criterion of whether the absolute value of tuned curvature was
higher or lower than 0.7 (as defined by the curvature scale in
Pasupathy and Connor 2001). Because curvature is defined as
a change in tangential angle over arc length, we computed the
joint distributions of the differences in subunit orientations
(roughly corresponding to the change in tangential angle) and
the differences in angular positions of two subunits (roughly
proportional to the arc length). There were only four discrete
orientations for the C1 units in the model, and the orientation
differences were binned by 0, 90, and 45/135° (the differences
of 45 and 135° are ill defined). The angular position differences
were binned by small, medium, and large differences (indi-
cated by S, M, and L in the label) in 60° steps.

Figure 10, C and D, shows that some curvature tuning can be
characterized by simple geometric relationships between Cl
afferents. When there is one dominant subunit, its orientation
has a strong influence on whether the neuron is tuned for sharp

FIG. 10. Comparison of the C2 model and the boundary conformation
model. A: comparison of goodness of fits of our V4 model and two boundary
conformation tuning models (2D and 4D curvature and angular-position
models) described in Pasupathy and Connor (2001). B: angular position of the
boundary conformation tuning function correlates with the “center of mass” of
all subunits (weighted by synaptic weight). The example neurons of Figs. 3 and
4 are indicated by 0 and O, respectively (at 45 and —90°). C and D: comparison
of C1 subunit parameters with curvature tuning. Neurons are separated for this
analysis into those that are tuned to high curvature (fop) and low curvature
(bottom) values and models with 1 dominant subunit (/st column) and many
dominant subunits (2nd column). High curvature tuning can be achieved by a
single dominant subunit oriented approximately radially, as seen in C top (the
subunit orientation with respect to its angular position is 0°, similar to the
example C2 unit in Fig. 3). If the subunit orientation was at 90° with respect
to its angular position, the C2 unit tends to be tuned to the low curvature
values, as shown in C bottom. When there are multiple dominant subunits, the
two strongest subunits are considered for simplicity in D. The joint distribu-
tions for the difference in subunit orientations and angular positions (binned
into small, S, medium, M, and large, L, differences) are shown. Low curvature
tuning tends to arise from a large angular position separation (arc length)
between the subunits, as indicated by the skewed (toward larger angular
position differences) joint histogram in D bottom (an example is the C2 unit in
Fig. 4). The results indicate that although we can identify some trends of
correspondence between these two different models, the correspondence is not
always straightforward.
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or broad curvature fragments. If the subunit orientation and its
angular position are parallel (for example, see Fig. 3C), the
neuron generally produces high responses to sharp curvature
fragments, which is evident from the bias toward 0° in Fig.
10C, top. If they are orthogonal, then the neuron is generally
tuned for low curvature values, which is evident from the bias
toward 90° in Fig. 10C, bottom. When multiple subunits have
strong weights (like the example neuron in Fig. 4), the differ-
ences in their orientations and angular positions affect the
curvature tuning, since curvature is determined by the rate of
change in the tangent angle over the arc length. For the low
curvature-tuned neurons, the two strongest subunits tend to
have different orientations, and the angular position differences
(proportional to the arc length) tend to be large (Fig. 10D, top).
Note that this analysis also shows that the correspondence
between these two models is not always straightforward. For
example, some neurons that exhibit tuning to high curvature
and are fit with C2 units with one dominant C1 unit, have
subunit orientations that are perpendicular to the radial direc-
tion instead of parallel. A full description of a C2 unit’s tuning
properties requires the inclusion of all the C1 afferents, and the
approximations we have used here may not capture the full
situation. Nonetheless, the geometric arrangement of oriented
V1-like afferents (C1 units) can explain the observed curvature
and angular position tuning behavior in many V4 neurons.

DISCUSSION

Our simulations demonstrate that a quantitative model of the
ventral stream, theoretically motivated and biologically plausible,
reproduces visual shape selectivity and invariance properties of
area V4 from the known properties of lower visual area V1. The
model achieves V4-like representations through a nonlinear,
translation-invariant combination of locally selective subunits,
suggesting a computational mechanism within or culminating in
area V4. The simulated C2 units successfully reproduce selectiv-
ity and invariance to local translation for 109 V4 neurons tested
with boundary conformation stimuli. Across the neural popula-
tion, the model produces an average test set correlation coefficient
of 0.57 (uncorrected for explainable variance). We also found that
the population of C2 units qualitatively generalizes to other
experimental stimulus sets using bars and complex gratings.

C2 units may form an intermediate code for representing
boundary conformations in natural images. Figure 11 shows
the responses of the two C2 units presented in Figs. 3 and 4 to
two natural images. Based on the observed tuning properties of
these neurons, it is not surprising to see that the first C2 unit
responds strongly to the upper fins in the dolphin images,
which contain sharp convex projections toward the upper right
direction. The second C2 unit, which is selective for concave
fragments in the lower portion of its receptive field, yields
strong responses to several such boundary elements within the
dolphin images. The graded responses of C2 unit populations
may then form a representation of natural images that is
particularly tuned to the conformations of various contours
within an image. This code may be equivalent to the descrip-
tion provided by a previous study that demonstrated how a
population code of V4 tuning functions could effectively rep-
resent contour stimuli (Pasupathy and Connor 2002). As seen
in the two example images here, C2 responses can represent
complex shapes or objects, even when curves and edges are
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difficult to define or segment and when the informative features
are embedded within the boundary of an object (e.g., eyes,
mouth, and nose within a face). Demonstrating this point, C2
units have been used as visual features to perform robust object
recognition in natural images (Serre et al. 2007a,b). These
results may suggest that V4 model neurons can respond like,
and therefore be considered as, boundary conformation filters
just as V1 neurons can be considered edge or orientation filters
(Chisum and Fitzpatrick 2004; Daugman 1980; Jones and
Palmer 1987; Mahon and De Valois 2001; Ringach 2004).

Our model of V4 is congruent with the major findings in
Gallant et al. (1996)’s study, which indicate a bias within the
population of V4 neurons to non-Cartesian gratings. Gallant et
al. (1996) also proposed a mechanism, analogous to the simple
to complex cell transformation in V1 proposed by Hubel and
Wiesel (1962) to account for V4 responses. The ability of our
model to predict the responses of a novel stimulus class given
the responses of a training stimulus set suggests critical future
tests for the model: test the grating selectivity predictions of C2
units, which were derived from V4 measurements using
boundary conformation stimuli, against the physiologically
measured responses of these same V4 neurons to gratings. In
addition, our model of V4 can be shown (Serre et al. 2005) to
reproduce the experimental data of Reynolds et al. (1999) for
the condition without attentional modulation in V4. Although
our model is not designed to address some other known
properties of V4 responses, namely spectral and color selec-
tivity (Schein and Desimone 1990), three-dimensional orien-
tation tuning (Hinkle and Connor 2002), saliency (Mazer and
Gallant 2003), or attentional effects (Reynolds et al. 1999), it
accounts for much of the structural object-dependent selectiv-
ity and invariance currently described.

A recent publication (David et al. 2006) proposed that V4
response properties could be described with a second-order
nonlinearity, called the spectral receptive field (SRF). This
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FIG. 11.  Model responses to natural images. Two images of dolphins (top)

and the responses of the two example C2 units from Figs. 3 (middle) and 4
(bottom) to these images are shown. Because C2 receptive fields cover a small
fraction of these images, the response of a C2 unit was calculated on
overlapping (by a factor of 1/3 the C2 receptive field) crops of the stimulus
image. Based on their shape selectivity, these model C2 units respond strongly
to certain features within the image, as indicated by the gray-scale response
maps in the middle and bottom (dark areas indicate a high response). The
images are from Fei-Fei et al. (2004).
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description of V4 neurons is phenomenological and aimed at
providing a robust regression model of the neural response,
whereas our model is motivated and constrained by the com-
putational goal of explaining object recognition in the ventral
stream. It is therefore interesting to ask whether a connection
exists between the two descriptions at the level of V4 cells. In
fact, Volterra series analysis reveals that the leading term of
our model is similar to the SRF (involving the spectral power
of the input pattern), but the series associated with our model
contains additional terms that are not negligible. In this sense,
the model described here (Fig. 1) could be considered as
similar but not identical to the model of David et al. (see
apPENDIX). The additional aspects of our model describe some
important aspects of V4 responses that are not described by the
SRF. Because the SRF model lacks the spatial organization of
afferent inputs, its response profiles will not be selective for
angular position tuning, sensitive to the relative positions of
features in space, or inhomogeneous within the receptive field,
which are all attributes of C2 units. Our model architecture
control also demonstrates the advantage of our two layer
network for describing both selectivity and invariance in V4.
Furthermore, the nonlinear selectivity operation (Egs. I and 2)
used by S2 units and the additional C2 layer account for the
nonlinear summation properties of V4 (Desimone and Schein
1987; Gawne and Martin 2002; Gustavsen et al. 2004), which
are not described by the SRF model. However, whereas our C2
model assumes a specific type of architecture and a set of
nonlinear operations to explain the properties of the V4 neu-
rons, the SRF model provides a more general and agnostic
regression framework, which can be used to analyze and
predict the neural responses not just specific to V4. The two
models should ultimately be evaluated against experimental
data. The correlation between predicted and actual data for the
two models (0.32 for David et al. 2006 and 0.57 for our model)
cannot be directly compared because the stimulus set used in
David et al. (2006) is more complex and varied.

Learning may also play a critical role in the selectivity of V4
neurons. In our full model of the ventral pathway (see Fig. 1,
right), the configurations and weights between S2 units and
their oriented C1 afferents, which determine the selectivity of
the C2 units, are learned from natural viewing experiences by
a simple, unsupervised learning mechanism. According to our
simulations, such learning mechanisms are capable of gener-
ating rich intermediate feature selectivities that account for the
observed selectivity of V4 neurons (see section 4.2 of Serre et
al. 2005; Serre et al. 2007a). Building on such intermediate
feature selectivity, the model of the ventral pathway can
perform object recognition tasks on natural images at perfor-
mance levels at least as good as state-of-the-art image recog-
nition algorithms and can mimic human performance in rapid
categorization tasks (Serre et al. 2005, 2007a,b). The invari-
ance may also be learned in a biophysically plausible way (e.g.,
Foldiak 1991; Wallis 1996; Wiskott and Sejnowski 2002),
during a developmental period, from natural viewing experi-
ences, such as watching a temporal sequence of moving ob-
jects. If temporally correlated neurons in a neighborhood
connect to the same higher-order cell, the appropriate connec-
tivity found between S2 and C2 units in the model can be
generated (Serre et al. 2005).

Although our model is generally consistent with the known
anatomical connectivity between V4 and lower visual areas, the
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full picture is certainly more complex. Beyond the description of
a hierarchy of visual areas (Felleman and Van Essen 1991), the
full anatomical picture includes “bypass’” connections and highly
organized inputs from V2. Connections from V1 to V4 that skip
V2, known as bypass connections, represent a small but signifi-
cant input to V4 (Nakamura et al. 1993). These connections may
indicate two distinct inputs to V4 or may be considered as
evidence for similar representations in V1 and V2 that are pro-
cessed similarly in V4. In addition Shipp and Zeki (1995) and
Xiao et al. (1999) have described the segregation and convergence
of thin stripe and interstripe V2 regions onto V4. In light of these
anatomical findings, it will be informative to determine if ana-
tomically distinct inputs to V4 produce functionally distinct pop-
ulations of neurons within V4. Overall, more work needs to be
done to link the functional properties of V4 neurons and the
anatomical connections between afferent areas.

How does V2 fit into our model of V4? There are relatively
few experimental and theoretical studies of V2, making it
difficult to include concrete constraints in our analysis. How-
ever, three hypotheses about the roles and functions of V2 are
suggested by our hierarchical model. First, the selectivity and
invariance seen in V4 may be constructed from yet another
intermediate representation in V2, which itself is both more
selective and more invariant than V1 (Ito and Komatsu 2004,
Mahon and De Valois 2001) but less selective and less invari-
ant than V4 (producing a continuum of receptive field sizes and
invariance ranges depending on pooling ranges within the
model), or second, V2 neurons are analogous to S2 units of the
model so that they have complex shape selectivity but weak
translation invariance [note that there may also be hyper-
complex selectivity properties already present in V1 as re-
ported by Mahon and De Valois (2001) and Hegde and Van
Essen (2006)]. The more invariant representation is then real-
ized by V4 neurons pooling over V2 neurons. Under this
hypothesis, the cortico-cortical projections between areas V2
and V4 would represent fundamentally different transforma-
tions from the projections between V1 and V2. Third, area V2
is representationally similar to V1 for feedforward responses.
Under this last hypothesis, area V4 may contain neurons
analogous to both S2 and C2 units in the model or the
selectivity representations (of S2 units) are computed through
dendritic computations within neurons in V4 (Mel et al. 1998;
Zhang et al. 1993). Experimental findings show that the ma-
jority of measured V4 responses are invariant to local transla-
tion, supporting the hypotheses that S2-like selectivity repre-
sentations with small invariance range are present in another
area of the brain, that they are computed implicitly in V4, or
that there has been an experimental sampling bias. However,
although V2 neurons are known to show selectivity over a
range of stimulus sets (Hegde and Van Essen 2003; Ito and
Komatsu 2004), there is not enough experimental data so far to
verify or even distinguish these hypotheses. Carefully measur-
ing and comparing both selectivity and invariance of areas V2
and V4 would be necessary to resolve this issue.

The V4 dataset examined from Pasupathy and Connor (2001)
contained recordings using only one stimulus class and did not
allow us to test the generalization abilities of the model to other
types of stimuli. Although attempts were made to gauge the
generalization capacity of the model (using cross-validation
within the boundary conformation stimulus set and observing
model responses to gratings and natural images), the ultimate
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validation will require testing across a wider range of stimulus
sets, including natural images. Furthermore, the current model is
applicable only to the response of V4 neurons due to feedforward
inputs and does not explain attentional or top-down factors (Mazer
and Gallant 2003; Reynolds et al. 1999).

Our analysis of the representations in V4 adds to the mounting
evidence for canonical circuits present within the visual system.
Interestingly, our proposed mechanism for selectivity in V4 (a
normalized weighted summation over the inputs, Eq. 1) is quite
similar to the model of MT cells proposed in a recent publication
(Rust et al. 2006). In addition, another recent study claims that
motion integration in MT requires a local mechanism (Majaj et al.
2007), which may be analogous to our locally selective S2 units
and more “global” C2 units for describing V4. Consequently, the
same tuning and invariance operations may also be operating
along the dorsal stream and may have a key role in determining
various properties of motion-selective neurons in MT. Our model
of V4 is also consistent with widely held beliefs on the ventral
pathway, where more complex selectivity and a greater range of
invariance properties are thought to be generated by precise
combinations of afferent inputs. Previous quantitative studies have
argued for similar mechanisms in other parts of the ventral stream
(Perrett and Oram 1993). Further experimental work using pa-
rameterized shape spaces has shown that IT responses can be
explained as a combination of invariant V4-like representations
(Brincat and Connor 2004), which is consistent with our model
(Serre et al. 2005). It has also been suggested that a tuning
operation, used repeatedly in our model, may be a suitable
mechanism for producing generalization, a key attribute of any
learning system (Poggio and Bizzi 2004). Therefore instead of a
collection of unrelated areas performing distinct tasks, the ventral
pathway may be a system organized around two basic computa-
tional mechanisms necessary for robust object recognition.

APPENDIX
Comparison with the SRF model of V4

A recent publication (David et al. 2006) presented a general
regression model on a very large set of neural responses and demon-
strated that V4 response properties could be described in terms of a
second-order nonlinear model, called the SRF. In this SRF frame-
work, a V4 cell’s response is analyzed by linearly combining the
frequency components of the spatial autocorrelation of its inputs

= f (@) B(@)Tdp(w) + ry + &

where 7 is the response of the V4 neuron, |S(w)|? is the Fourier power
spectrum of the visual pattern used as stimulus, w is the two-
dimensional vector of spatial frequencies. The SRF h(w) is estimated
from the data. The model of David et al. is closely related to energy
models (Adelson and Bergen 1985; see also Poggio and Reichardt
1973). The underlying assumptions are as follows. The output of a
simple cell in V1 centered in x is represented as a convolution of the
stimulus s with a linear receptive field structure /(x)

f h(x—&)s(§)du(é)

A complex cell in V1 is then described as the sum of the square of the
output of simple cells of the same orientations at different positions
within a neighborhood N (which introduces phase-invariance)
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E(h *s)(h* 5= f du(w)d(w) f du(w)S(w)H(w)S(0—w)H(w—w)

SEN

In our model, the simple cells are also described with a linear,
orientation-selective convolution operation, plus a rectifying nonlin-
earity applied to oN-OFF and OFF-ON cells. Effectively, we perform an
absolute value operation (invariant to contrast reversal) on the output
of linear filtering

‘fh(x—é)S(é)du(é)‘

A CI1 unit, corresponding to a complex V1 cell, performs a max operation
on the rectified output of a set of simple cells of the same orientations at
different positions (and scales) within a neighborhood N.

From here on,” we use a rather general representation of nonlinear
systems, the Volterra series (see Bedrosian and Rice 1971; Wu et al.
2006); for an analysis of its range of validity, see Palm and Poggio
1977). The Volterra series is a functional power series expansion
containing linear and in general an infinite number of higher order
terms. Although the multi-input version of the Volterra series should
be used here, one may still assume the same one-input spatial
frequency description of David et al. In this case, we can use Eq. 10
in (Bedrosian and Rice 1971)

1 1
Y(w) = Gi(w)S(w) + 2,J ()G (1,0 = 0)S(w)S(0 — ) + ny

X du(w)dil@,)Gs(0),w5,0 — o) — @)S(w)S(w,)S(0 — 0 — wy)

+ ...

to describe the output of a C1 unit in our model. The max operation
of a C1 unit can be approximated as the power series expansion of the
softmax (Serre et al. 2005) or even more crudely as an average
operation. Hence, the output of a C1 unit can be described as Y(0) in
the Fourier transform of the Volterra series above. Because of the
absolute value operation, the series consists of even order terms only,
and the response of a specific complex cell k is given by (with
constant multiplicative factors omitted)

o= J dp(w)Gi(w,,— w)|S(w)]?

+ J f dp(w)dp(w)|S(w)]*S(@,)*Gi(w,, — o, 0y, —w) + . ..

A S2 unit in Fig. 1 combines the output of several C1 units ¢y, ¢, . . .,
¢,, with a normalized dot product, yielding

r= 2 aas= X«

k=1...M k=1,...M

2
+

f d/J«(wl)Gé(wlﬁwl)‘S(wl)

2
ff dp(w)dp(w,)

where terms of degree >2 in general are not negligible. We expect a
similar expansion to hold for C2 units because they inherit the tuning
properties of S2 units.

2
k
Gy, ~ 0,0y, —wy) +

S(w)| | | S(w)

2 Although the Volterra series may be used from the earlier stages in the
model, applying the Volterra expansion at the C1 level simplifies the analysis
and allows an easier comparison between the models of David et al. and ours.
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We see that the David et al. model corresponds to assuming that all
kernels G are identically zero apart from Si-1....xG5 and that the
latter has the special form

Gy(w,w,) = H(w)H(w,)

This corresponds to linear filtering followed by a squaring operation.
It is interesting that the leading term in both our and David et al.
model is similar, involving the spectrum of the input pattern (although
in the case of our model the 2nd-order term does not necessarily have
the simple form of David et al.). The additional terms in the equation
above are specifically dictated by our model architecture; the only
parameters we estimate in this paper are the number M and type of
subunits for each C2 unit from a fixed set.
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