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Abstract. We present a component-based framework for face detection and identification. The face detection and
identification modules share the same hierarchical architecture. They both consist of two layers of classifiers, a layer with
a set of component classifiers and a layer with a single combination classifier. The component classifiers independently
detect/identify facial parts in the image. Their outputs are passed the combination classifier which performs the final
detection/identification of the face.

We describe an algorithm which automatically learns two separate sets of facial components for the detection and
identification tasks. In experiments we compare the detection and identification systems to standard global approaches.
The experimental results clearly show that our component-based approach is superior to global approaches.

Keywords: face detection, face identification, face recognition, object detection, object recognition, support vector
machines, components, fragments, parts, hierarchical classification

1. Introduction

Object detection systems in which classification is based
on local object features have become increasingly com-
mon in the computer vision community over the last cou-
ple of years (see e.g. Ullman et al., 2002; Heisele et al.,
2001; Mohan et al., 2001; Weber et al., 2000; Dorko and
Schmid, 2003; Schneiderman and Kanade, 2000). These
systems have the following two processing steps in com-
mon: In a first step, the image is scanned for a set of
characteristic features of the object. For example, in a
car detection system a canonical gray-value template of
a wheel might be cross-correlated with the input image
to localize the wheels of a car. We will refer to these lo-
cal object features as the components of an object, other
authors use different denotations such as parts, patches
or fragments. Accordingly, the feature detectors will be
called component detectors or component classifiers. In
a second step, the results of the component detector stage
are combined to determine whether the input image con-

tains an object of the given class. We will refer to this
classifier as the combination classifier.

An alternative approach to object classification is to
search for the object as a whole, for example by comput-
ing the cross-correlation between a template of the object
and the input image. In contrast to the component-based
approach, a single classifier takes as input a feature vec-
tor containing information about the whole object. We
will refer to this category of techniques as the global ap-
proach; examples of global face detection systems are
described in Sung (1996), Oren et al. (1997), Rowley et
al. (1998), Osuna (1998), Heisele et al. (2003). There are
systems which fall in between the component-based and
the global approach. The face detection system in Viola
and Jones (2004), for example, performs classification
with an ensemble of simple classifiers, each one operating
on locally computed image features, similar to compo-
nent detectors. However, each of these simple classifiers
is only applied to a fixed x-y-position within the object
window. In the component-based approach described in
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this paper, the locations of the components relative to
each other are not fixed; each component detector per-
forms a search over some part of the image to find the
best matching component.

In the following we briefly motivate the component-
based approach:

(a) A major problem in detection is the variation in the
appearance of objects belonging to the same class.
For example, a car detector should be able to de-
tect SUVs as well as sports cars, even though they
significantly differ in their shapes. Building a detec-
tor based on components which are visually similar
across all objects of the class might solve this prob-
lem. In the case of cars, these indicator components
could be the wheels, the headlights or the taillights.

(b) Components usually vary less under pose changes
than the image pattern of the whole object. Assum-
ing that sufficiently small components correspond
to planar patches on the 3D surface of the object,
changes in the viewpoint of an object can be mod-
elled as affine transformations on the component
level. Under this assumption, view invariance can be
achieved by using affine invariant image features in
the component detector stage as proposed in Dorko
and Schmid (2003). A possibility to achieve view
invariance in the global approach is to train a set of
view-tuned, global classifiers as suggested by Poggio
and Edelman (1990). However, it is preferable to
achieve view invariance at the feature level in or-
der to keep the number of required training exam-
ples small. Furthermore, shifting a set of view-tuned
classifiers over the image significantly increases the
computation at run-time.

(c) Another source of variations in an object’s appear-
ance is partial occlusion. In general it is difficult
to collect a training set of images which covers the
spectrum of possible variations caused by occlusion.
In the component-based approach, partial occlusion
will only affect the outputs of a few component de-
tectors at a time. Therefore, a solution to the oc-
clusion problem might be a combination classifier
which is robust against changes in a small number
of its input features, e.g. a voting-based classifier.
Another possibility is to add artificial examples of
partially occluded objects to the training data of the
combination classifier, e.g. by decreasing the compo-
nent detector outputs computed on occlusion-free ex-
amples. Experiments on detecting partially occluded
pedestrians with a component-based system similar
to the one describe in our paper have been reported
in Mohan et al. (2001).

One of the main problems that has to be addressed
in the component-based approach is how to choose a

suitable set of components. A manually selected set of
five components containing the head, the upper body,
both arms, and the lower body has been used in Mohan
et al. (2001) for person detection. Although there are in-
tuitively obvious choices of components for many types
of objects, such as the eyes, the nose and the mouth for
faces, a more systematic approach is to automatically se-
lect the components based on their discriminative power.
In Ullman et al. (2002) components of various sizes were
cropped at random locations in the training images of
an object. The mutual information between the occur-
rence of a component in a training image and the class
label of the image was used as a measure to rank and
select components. An alternative to ranking the ran-
domly extracted components is to cluster them and to
use the cluster centers as canonical component templates,
as suggested in Morgenstern and Heisele (2003). An-
other strategy to automatically determine an initial set of
components is to apply a generic interest operator to the
training images and to select components located in the
vicinity of the detected points of interest (Fergus et al.,
2003; Dorko and Schmid, 2003; Lowe, 2004). In Dorko
and Schmid (2003), this initial set was subsequently re-
duced by selecting components based on mutual infor-
mation and likelihood ratio. Using interest operators has
the advantage of being able to quickly and reliably locate
component candidates in a given input image. However,
forcing the locations of the components to coincide with
the points detected by the interest operator considerably
restricts the choice of possible components—important
components might be lost. Furthermore, interest opera-
tors have a tendency to fail for objects with little texture
and objects at a low pixel resolution. In this paper, we
propose a method for automatically learning components
for detection and identification based on a training and
cross-validation set of faces. This method is a modifica-
tion of the algorithm proposed in Heisele et al. (2001),
in which the size and shape of facial components was
learned by minimizing a bound on the classification er-
ror of the component classifiers.

How to include information about the spatial rela-
tionship between components is another important ques-
tion that has to be addressed in the component-based
approach. In the following discussion we assume that
scale and translation invariance are achieved by sliding
a window over the input image at different resolutions—
the detection task is then reduced to classifying the pat-
tern within the current window. Intuitively, information
about the location of the components is important in
cases where the number of components is small and
each component carries only little class-specific infor-
mation. Omitting any spatial information leads to a de-
tection system similar to the biological object recogni-
tion models proposed in Riesenhuber and Poggio (1999);
Ullman et al. (2002); Serre et al. (2005). In Riesenhuber
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and Poggio (1999), the components are located by search-
ing for the maximum outputs of the detectors across the
window. The only data propagated to the combination
classifier are the outputs of the component detectors while
the information about the location of the maxima is not
used. In this paper, we will investigate two possibilities
to add spatial information to this basic system: (a) im-
plicitly by restricting the location of each component to
be within a pre-defined search region inside the window,
and (b) explicitly by adding the position of the detected
components as additional inputs to the combination clas-
sifier. An iterative search for facial components based
on the detector outputs and the empirical distribution of
the relative position between pairs of components has
been published in Bileschi and Heisele (2002). This tech-
nique achieved a higher accuracy in localizing the eyes
in a face than the straightforward search for the max-
imum detector responses. However, its computational
complexity is a major drawback regarding real-world
applicability.

The tasks of face detection and identification share
the key problems of pose and illumination invariance.
Most of the arguments mentioned before in support of
component-based face detection can therefore be ap-
plied to component-based face identification. However,
face identification poses two additional problems: the
large number of classes and the small number of training
examples per class (Phillips, 1998). Our learning-based
approach requires a large set of training examples per
person. To solve this dilemma, we apply 3D morphable
models (Blanz and Vetter, 1999) during training to gen-
erate a sufficient number of synthetic face images from
an initially small training set of real images. We do not
address the problem of identifying a large number of peo-
ple.1 Instead, we focus on robustness against changes in
pose and illumination given a small group of people. Sys-
tems like ours might be used in home and office environ-
ments where the number of people to be recognized is
usually small.

In the following, we briefly review face identification
techniques which are closely related to our approach.
A comprehensive survey on state-of-the-art techniques
in face identification can be found in Zhao et al.
(2003). In Brunelli and Poggio (1993), faces were
identified by independently matching templates of three
facial regions: both eyes, the nose and the mouth. The
configuration of the components during classification
was unconstrained since the system did not include a
geometrical model of the face. A similar approach with
an additional alignment stage was proposed in Beymer
(1993). In an effort to enhance the robustness against
pose changes the originally global eigenface method has
been further developed into a component-based system
in Pentland et al. (1994) where PCA is applied to local
facial components. The elastic grid matching algorithm

described in Wiskott et al. (1997) uses Gabor wavelets
to extract features at grid points and graph matching for
the proper positioning of the grid. The identification is
based on wavelet coefficients that were computed on the
nodes of a 2D elastic graph. In Nefian and Hayes (1999),
a window was shifted over the face image and the DCT
coefficients computed within the window were fed to a
2D hidden Markov model. A probabilistic approach us-
ing part-based matching has been proposed in Martinez
(2002) for expression invariant and occlusion tolerant
recognition of frontal faces.

Our face identification system uses the outputs of
the component-based face detector during training
and at runtime. In the training stage, the computed
locations of the face detection components are used
to iteratively learn a set of components suitable for
identification, called identification components. At
runtime, the face detector supplies the identification
module with the center locations of the identification
components which are then extracted and classified by
a hierarchy of identification classifiers. This is different
from our previous face identification system (Heisele
et al., 2003) in which the gray values of the detection
components were combined into one feature vector and
then classified by a single classifier.

The outline of the paper is as follows: Section 2 ex-
plains the architecture of our component-based face de-
tection and identification system. In Section 3 we describe
an algorithm for learning facial components for detec-
tion and identification. In Section 4 we explore different
techniques of integrating spatial information into the de-
tection process and present experimental results on the
face detection system. Results of the full system on a face
identification test set are given in Section 5. This section
also includes comparisons to standard global approaches
based on SVM, PCA and LDA.

2. Architecture of the System

An overview of our system is shown in Fig. 1. We first
computed a resolution pyramid from the input image. The
pyramid was scanned for faces by sliding a fixed sized
object window pixel-by-pixel across each image. On the
first level of the detection module, component classifiers
independently located components of the face inside the
current object window. We experimented with two differ-
ent strategies for localizing the components: (a) searching
for the maximum real-valued output of the corresponding
component classifier over the whole object window, and
(b) searching for the maximum output in a pre-defined
rectangular search region within the object window.

The component detectors were linear SVMs, each of
which was trained on a set of extracted facial components
and on a set of non-face patterns.
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Figure 1. System overview of the component-based face detection and identification system. An object window of fixed size is slid over the input
image (1). At the first level, component classifiers specialized in detecting facial parts are shifted over the current object window (2) and their
real-valued output values are computed at each position inside the object window (3). At the second level, the maximum output O of each component
and optionally the position X, Y of each maximum are input to the detection combination classifier. When a face is detected the center coordinates
of the detected components are passed to the identification module and the set of identification components is extracted around these points (5). The
identification components are classified separately by second-degree polynomial SVMs (6) and the outputs of the classifiers are combined to identify
the person’s face (7).

If a face was detected inside an object window, the
scale of the face and the location of the detected com-
ponents were passed to the face identification module.
Based on this information, the face identification module
extracted a previously learned set of identification com-
ponents which was different from the set of detection
components. Each identification component is classified
by a separate component classifier and their results are
passed to a combination classifier which performs the
final identification of the face. The component classi-
fiers were second-degree polynomial SVMs which were
trained on a set of synthetic face images. We implemented
four types of combination classifiers: classification based
on the majority vote amongst the component classi-
fiers, a classifier based on the sum over the real-valued
component classifier outputs, a classifier based on the
product of the real-valued component classifier outputs,
and a linear SVM trained on the component classifier
outputs.

3. Learning Components for Face Detection and

Identification

Extracting and labelling training data is usually a tedious
and time-consuming work. In order to train the compo-
nent classifiers for both identification and detection, we
have to extract the components from each face image
in the training database. Manual extraction would only
be feasible for a very small number of components and
face images. To automate the extraction process, we used
textured 3D head models (Vetter, 1998) with known 3D
correspondences. By rendering the 3D head models we
could generate faces in arbitrary poses and with arbitrary
illumination.

3.1. Training Data for Detection

From 100 textured 3D head models of Caucasian sub-
jects we rendered2 tens of thousands of face images of
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Figure 2. Examples of synthetic face images which were generated for training the component detectors. The size of each image was 100×100
pixels corresponding to resolution of the face of about 58×58 pixels.

Figure 3. Examples of the image triplets used for generating the 3D models.

size 58 × 58 from which we randomly selected 6,843
images for training and cross-validation (CV). Some ex-
amples of synthetic face images from the set used to train
the face detection system are shown in Fig. 2. The nega-
tive training images initially consisted of 10,209 58 × 58
non-face patches randomly extracted from a set of non-
face images. We then applied bootstrapping to enlarge
the training data by non-face patterns that look similar to
faces. To do so, we trained a single linear SVM classifier
and applied it to the previously used set of non-face im-
ages. The false positives (FPs) were added to the non-face
training data to build the final training set of size 13,654.
We set one third of the positive and negative images aside
to build a CV set of 2,281 face and 4,452 non-face pat-
terns. This left 4,562 face and 9,102 non-face patterns for
training.

3.2. Training Data for Identification

We first fitted 3D face models to three images of each per-
son in the face identification database (Blanz and Vetter,
1999). Examples of the image triplets are shown in Fig. 3.
Each triplet consisted of a frontal, a half-profile, and a
profile high resolution face image. We then generated
synthetic faces at a resolution of 58 × 58 for the ten sub-
jects by rendering the 3D face models under varying pose
and illumination. The original frontal face images of all
ten subjects and the corresponding synthetic images are
shown in Fig. 4. The images were divided into a training
set of 3,080 images and a CV set of 3,960 images.3

3.3. Learning of the Components

The learning algorithm iteratively grew components
around a manually preselected set of points in the face
image, called reference points (see Fig. 5). The same set
of 14 reference points was used to learn the detection

and the identification components. Choosing the same
reference points was crucial since it allowed us to use the
face detector to localize both types of components at run-
time. The learning algorithm described in the following
paragraphs was applied to each component separately.

The growing algorithm started with a small rectangular
component located around a reference point in the face
image. For learning the detection components, the posi-
tion of each reference point was accurately determined
based on the 3D correspondences given by the morphable
model. For the identification components, we ran the face
detector on the training and CV images of the identifi-
cation to locate the reference points in each image. The
identification components were then extracted around the
reference points from all face images to build a training
set of positive examples. For detection, the negative set
consisted of random background patterns which had the
same size and rectangular shape as the facial component.
As component classifier we chose a linear SVM. In the
case of identification, each component classifier was a set
of second-degree polynomial SVMs which were trained
according to the one-vs.-all strategy, i.e. the components
of one person were trained against the components of the
remaining nine people. For both detection and identifica-
tion the components were histogram-equalized to remove
variations caused by lighting changes.

After training a component classifier on the histogram-
equalized gray values of the extracted components we
determined its performance on the CV set.4 We then en-
larged the component by expanding the rectangle by one
pixel into one of the four directions: up, down, left, and
right. As before, we generated the training data, trained a
component classifier and determined its error rate on the
CV set. We did this for expansions into all four directions
and finally kept the expansion which led to the smallest
error. This process was continued until the error on the CV
set reached zero or until a maximum number of iterations
had been computed. The iterative growing process of the
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Figure 4. Original images and synthetic images generated from 3D models for all ten subjects in the identification training database.

Figure 5. The 14 reference points used for component learning.

right eye and nose components for the detection case is
shown in Fig. 6. The final set of components is depicted
in Fig. 7 and their dimensions are given in Table 1.

4. Evaluation of the Face Detector

4.1. Spatial Information for Face Detection

As mentioned in the introduction, we experimented with
two different strategies for localizing the components:

(a) Searching for the maximum real-valued output of
each component classifier over the whole object win-
dow.

(b) Searching for the maximum output within a rectan-
gular search region around the expected location of
the component. The search region was computed as

the smallest rectangle that contained the position of
the center point of the given component across all
training images.

The maximum output of a component classifier com-
puted across the whole pattern of a face is likely to
be close to the expected location of the component,
i.e. to fall within the search region of the component
computed on the training data. For a non-face pattern,
on the other hand, the component classifier’s maximum
can be assumed to be uniformly distributed across the
whole pattern. Therefore, the maxima computed within
search regions can be expected to have a higher dis-
criminative power than the maxima computed across
the whole pattern. This argument loses in strength as
the variations in the pose increase which in turn leads
to an increase in the size of the search regions. An-
other weakness of modelling the geometry of an ob-
ject using the maximum operation within search regions
is that it does not account for the correlation between
the positions of the components in the detection process
since each component is detected separately within its
corresponding search region. A way of exploiting the
pairwise correlation between the positions of compo-
nents during the detection stage has been suggested in
Bileschi and Heisele (2002).

Another way of including spatial information into the
classification process is to propagate information about
the image location of the detected component to the
combination classifier. To analyze this possibility, we
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Figure 6. Illustration of the iterative growing process for the component located at the center of nose (top) and the right eye (bottom) in the detection
case. The components are arranged from top left to bottom right, starting with the initial component in the top left corner. The minimum CV error is
given above each component and the arrow indicates the corresponding direction selected.
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Table 1. The dimensions of the 14 learned components for face detection and identification. Left and right are relative
to the face.

Detection Identification

Component Right Left Up Down Right Left Up Down

R. Eye 9 17 9 9 7 7 18 4

L. Eye 17 9 9 9 19 2 14 3

R. Eyebrow 2 31 5 22 2 12 9 7

L. Eyebrow 31 2 5 22 17 2 12 7

Nose Bridge 7 13 8 8 8 9 17 4

Nose 10 8 19 17 8 3 5 22

R. Nostril 11 13 10 10 9 11 11 7

L. Nostril 13 11 10 10 14 4 12 8

R. Corner Mouth 9 24 19 5 3 8 9 13

L. Corner Mouth 24 9 19 5 16 2 12 8

Upper Lip 10 9 8 5 10 4 10 13

Lower Lip 15 9 22 1 9 3 10 10

R. Cheek 6 31 7 16 3 15 6 14

L. Cheek 31 6 7 16 21 2 5 10

Figure 7. The final sets of the 14 learned components for detection (left) and identification (right).

conducted experiments with three types of feature vectors
for the combination classifier:

(1) The maximum real-valued outputs oi of the com-
ponent classifiers. This lead to a feature vector
(o1, . . . , oi , . . . , o14).

(2) The absolute-valued deviations (|xi |, |yi |) from
the expected position of the component in the
image5 which lead to a 2N -dimensional vector
(|x1|, |y1|, . . . |xi |, |yi |, . . . , |x14|, |y14|).

(3) The concatenation of the previous two feature vec-
tors: (o1, |x1|, |y1|, . . . oi , |xi |, |yi |, . . . , o14, |x14|,
|y14|).

4.2. Results

The test set consisted of 5,000 non-face patterns which
were selected by a 19 × 19 low-resolution LDA classi-
fier as the most similar to faces out of 112 background
images. The positive test set consisted of a subset of the
CMU-PIE database (Sim et al., 2003) which we randomly
sampled across the individuals, illumination and expres-
sions. We restricted the rotation of the faces to be in the
range between about −30◦ to 30◦ which matched the
pose range spanned by the training set. The faces were
extracted based on the coordinates of facial feature points
given in the CMU-PIE database.

For each test image, we computed the real-valued out-
puts of the combination classifier across different scales
and positions.6 Only the maximum output of the combi-
nation classifier in a given test image was kept for com-
puting the ROC curve. Figures 8–10 show examples of
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Figure 8. Examples of faces which were correctly detected by the component-based face detector.

Figure 9. Examples of faces which were missed by the face detector. Errors are mainly due to limitations of the synthetic training set (lacking
variations in lighting, absence of facial hair, eye glasses and facial expression).
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Figure 10. Examples of false detections generated by the component-based face detector.
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Figure 11. Left: Comparison between different classification strategies: “a” no search regions, “b” search regions, “1” maximum outputs of the
component classifiers as inputs to the combination classifier, “2” positions of the detected components as inputs to the combination classifier, “3”
positions and maximum outputs as inputs to the combination classifier. Right: Comparison between the performance of the component classifiers
for the systems without search regions “a” and with search regions “b”. Each of the two ROC curves is the average across the 14 ROC curves of the
component classifiers.

faces which were correctly detected, missed, and falsely
detected. The red (correct) and blue (incorrect) boxes
indicate the most likely locations of a face according to
the maximum response of the combination classifier. The
smaller green boxes indicate the location of the two eyes
and the mouth. Note that the variability in the training
images was much smaller than in the test images. The
synthetic training database consisted of Caucasian faces
only, it did not include people with a beard or a mous-
tache, neither did it include people wearing glasses.

The left diagram in Fig. 11 shows the ROC curves for
the different classification strategies. The two systems
with search regions and a feature vector containing the
maximum outputs of the component classifiers (b1 and
b3) perform about the same and are better than the rest.
The system with search regions and position features only
(b2) performs poorly. It is not surprising that once the
search for a component is confined to a relatively small
region, the position of the maximum is not a good feature
to distinguish between faces and non-faces. The systems
in which the components are searched across the whole

pattern (a1, a2, a3) perform worse than b1 and b3 but
better than b2. The importance of search regions is also
evident in the comparison between the individual com-
ponent classifiers for a3 and b3. The diagram on the right
in Fig. 11 shows the ROC curves averaged across the 14
components. The difference in the recognition rate be-
tween search regions and no search regions is about 10%
across large parts of the ROC curve. Comparing the two
diagrams in Fig. 11 we get an impression of the improve-
ment achieved by combining the component classifiers.
The FP rate of the classifier combination at 70% recog-
nition rate is about 1% of the FP rate of the individual
classifiers, at 80% recognition rate it is about about 2%.

The ROC curve in Fig. 12 compares the best of the
component-based systems (b1) with two global systems
and the OpenCV (OpenCV Online Reference Manual,
2006; Lienhart et al., 2003) implementation of the Vi-
ola and Jones (2004) face detection system. The global
classifiers were single SVMs with linear and second-
degree polynomial kernels trained on the histogram-
equalized gray values of the whole 58×58 face patterns.



A Component-based Framework for Face Detection and Identification

0 0.01 0.02 0.03
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

Component-based system b1

Global, SVM, 2nd degree polynomial

Global, SVM, linear

OpenCV, Nb. of detections

OpenCV, Maximum output

Figure 12. Comparison between the best component-based system
(“b1”) with two global SVM classifiers (linear and a second-degree
polynomial) and the OpenCV frontal face detector based on Viola and
Jones (2004). We used two different criteria to compute the ROC curve
for the OpenCV system: the maximum output of the final classifier
(“Maximum output”) and the number of overlapping detections (“Nb.
of detections”) per test pattern.

The component system clearly outperforms both global
systems.

We compared our system to OpenCV’s default frontal
face detector7 and we retrained the OpenCV system on
our training data. The performance of the retrained sys-
tem was worse than that of OpenCV’s default detector.
The recognition rate for 15 stages was 64% with a FP rate
of 10%, i.e. 36% of the test faces did not reach the 15th
stage. The poor performance of the retrained classifier
might be explained by the uniformity of our training data
(perfectly aligned, synthetic faces) which could cause
overfitting. In Lienhart et al. (2003), small rotations and
distortions were applied to the face images to enlarge
the training set. Another problem might be the relatively
small number of negative training samples —hierarchical
classifiers of this type are usually trained with millions
of negative samples, see e.g. the experiments in Lienhart
et al. (2003) and Viola and Jones (2004). The component-
based system performed similar to OpenCV’s default

Figure 13. Examples of correct classifications from the identification test set. Shown is a pair of images for each subject in the database. The subjects
1 to 10 are arranged from top left to bottom right. Note the variety in pose and illumination.

frontal face detector, which was trained on real face im-
ages and a much larger number of negative training sam-
ples. Note that the OpenCV software computed the ROC
curve based on the number of detections within a neigh-
borhood, while we computed the ROC curve for our sys-
tem based on the maximum output of the classifier across
a test pattern. The two techniques yield vastly different
ROC curves, as can be seen in Fig. 12.8 If we base the per-
formance comparison on our method of computing the
ROC curve, the component-based detector would have a
clear advantage over the OpenCV detector.

A short note on the computational costs of our system
compared to the OpenCV system: Training of the compo-
nent system, once the shapes of the components had been
fixed, was several orders of magnitude faster than training
the OpenCV detector. During classification, our system
had to run 14 component detectors across each scaled
instance of the original input image. Since we used linear
SVMs, this was equivalent to correlating the image with
14 component templates. In addition we had to compute
the maxima of the component detector outputs within the
search regions. Since the search regions were smaller than
the components and since the maximum search can be im-
plemented as a one-dimensional search across the rows
and columns of the image, the computational costs of
the maximum computation were negligible compared to
the costs of the correlation. According to Viola and Jones
(2004), a template based system with a single global tem-
plate of size 24×24 required about 20 times more com-
putations than the hierarchical system in Viola and Jones
(2004).

5. Evaluation of the Face Identifier

5.1. Procedure

As previously described, the face identification was based
on the 14 identification components which were itera-
tively grown around the same 14 reference points as the
detection components. The identification module could
therefore use the positions of the detection components
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Figure 14. Examples of misclassified faces. Upon visual inspection about 50% of the failures could be attributed to inaccurate component detection
due to pose, expression and illumination. In the remaining cases there was no obvious reason for the misclassification.

computed by the face detector to localize and extract the
identification components. We added a global component
to the set of 14 learned components which covered a large
part of the face. The location of this component was
computed by taking the circumscribing square around
the 14 reference points. After extraction, the squared im-
age patch was scaled to a fixed size of 40×40 pixels.
We performed histogram equalization on each of the 15
components separately and then input their gray values to
the corresponding second-degree polynomial SVM clas-
sifier.

For training the 15 component classifiers we used the
full set of the 7,040 synthetic face images described pre-
viously, i.e. we did not split the set into training and CV
sets as was done for learning the identification compo-
nents. A test set was created by recording images of the
ten people in the database with a digital video camera.
The subjects were asked to rotate the face in depth and
the lighting conditions were changed by moving a light
source around the subject. The final test set consisted
of 200 images of each person. The training and test im-
ages were recorded on different days and with different
cameras.9

5.2. Results

The component-based face identification system was
compared to three types of global face identification sys-
tems, a PCA-based system, an LDA classifier, and a
second-degree polynomial SVM. The input to all global
systems was the 58×58 histogram equalized face pattern
as extracted by the global face detector (second-degree
polynomial SVM) described in the previous section. In
the PCA experiment we computed the 300-dimensional
eigenspace of all extracted faces from the training set of
7,040 images.10 During testing, we projected a given face
into the 300-dimensional PCA subspace and then com-
puted the closest neighbor amongst the training images.

We ran the component-based face detector (version

Table 2. The recognition rates.

Classifier Correct [%] Errors [%]

Component-based

Majority vote 86.80 13.20

Maximum product 88.85 11.15

Maximum sum 87.20 12.80

SVM, linear 89.25 10.75

SVM, linear, detection components 86.40 13.60

SVM, linear, single global component 77.90 22.10

Stacked features 84.65 15.35

Global

LDA 61.10 38.90

PCA, 300 dimensions 52.70 47.30

SVM, 2nd degree polynomial 63.40 36.60

b1) on the face identification test set to find the face and
to determine the positions of the 14 reference points in
the face. We then cropped the 14 learned identification
components plus the global component from the image,
histogram-equalized them and classified them by their
corresponding component classifiers. We explored four
techniques for combining the outputs of the component
classifiers (Ivanov et al., 2004) and compared it to our
previous approach in which we stacked the component
features into a single feature vector (Heisele et al., 2003):

• Majority vote: We computed the majority vote amongst
the discrete-valued component classifier outputs. In
case of a tie we decided based on the maximum
product.

• Maximum product: For each of the ten classes we com-
puted the product of the real-valued classifier outputs
and then selected the class with the largest product.
Prior to taking the product we normalized each classi-
fier’s outputs using the softmax function.

• Maximum sum: For each of the ten classes we com-
puted the sum over the real-valued classifier outputs
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and then selected the class with the largest sum. Prior
to computing the sum we normalized each classifier’s
output values using the softmax function.

• SVM: A linear SVM was trained on the real-valued
outputs of the component classifiers.

• Feature Stacking: The components were extracted
from the image and their pixel values were combined
into a single feature vector which was classified by a
linear SVM.

The results for the four combination strategies are
shown in the Table 2. Among the four combination tech-
niques, the linear SVM performs slightly better than the
maximum product and the maximum sum classifiers, the
majority decision performed the worst. The table further
shows the results for a system which used the face detec-
tion components in both the detection and identification
stage (“SVM, linear, detection components”).11 The en-
try labeled “SVM, linear, single global component” refers
to a system which used the component-based detector
to localize the face and the previously described global
component for identification. This system was therefor a
combination of a component-based detector with a global
identification classifier. The bottom three rows in the ta-
ble show results for global systems, i.e. face identification
systems which used the results of the global face detector
to locate the face and extract the features. The second-
degree polynomial SVM performed better than the LDA
and the PCA. The best component systems improves on

Table 3. The confusion matrix for the component-based identification system with a linear SVM as combination
classifier. The average recognition rate was 89.25%.

Subj. # 1 2 3 4 5 6 7 8 9 10

1 183 0 0 0 1 16 0 0 0 0

2 0 199 0 0 0 1 0 0 0 0

3 0 0 200 0 0 0 0 0 0 0

4 0 2 0 197 0 0 1 0 0 0

5 1 0 0 0 196 0 0 3 0 0

6 0 0 0 0 0 200 0 0 0 0

7 0 0 0 0 1 0 199 0 0 0

8 0 0 0 0 0 1 12 181 0 6

9 10 0 1 11 0 5 2 12 159 0

10 56 0 0 8 53 0 0 12 0 71

Figure 15. Examples from the test set with occlusions.

the best results of the global classifiers by 25%. Exam-
ples of correctly classified faces and misclassified faces
are shown in Figs. 13 and 14. Table 3 shows the confusion
matrix for the SVM component classifier. The error dis-
tribution among the ten subjects was highly unbalanced.
The recognition rate for the tenth subject was as low as
35%. This might be explained by an inaccurate 3D head
model or by the fact that this subject’s training and test
data were recorded six months apart from each other.

In our final experiment we tested the robustness of the
systems against occlusions. We generated a new test set
by pasting a rectangular patch of uniform gray value into
each test image. The dimensions of each patch, its gay
value and its location were chosen randomly for each
test image.12 Some example images of the test set with
occlusions are shown in Fig. 15. The training set remained
unchanged from the previous experiment.

The results for the occluded test images are shown in
Table 4. The recognition rate of the component system
dropped by around 20%, the recognition rate of the global
system dropped by about 10%. We ran a second test in
which the locations of the components were taken from
the original test on occlusion-free images and fed to the
identification module which ran on to the occluded test
images. In this case the performance dropped by 10% to
80%, indicating that detection and identification stages
contribute equally to the overall loss in performance. Al-
though the component system still outperforms the global
system by 15%, we expected a larger margin based on
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Table 4. The recognition rates on the occluded test set.

Classifier Correct [%] Errors [%]

Component, SVM, linear 69.0 31.0

Global, SVM, 2nd degree polynomial 54.65 45.35

Component, SVM, linear,

No occlusions in the detection stage 79.65 20.35

our previous tests and the built-in advantage of local fea-
tures over global features in images with occlusions. The
steep drop in performance of the component-based sys-
tem might be explained by the relatively large size of the
components and their strong overlaps: even a small oc-
clusion might affect several components simultaneously.

6. Conclusion

We described a component-based system for face de-
tection and identification. The detection and identifica-
tion modules shared the same two-layered architecture.
In the first layer, component classifiers independently de-
tected/identified parts of the face. The second layer con-
tained a single combination classifier which combined
the results of the component classifiers and performed
the final detection/identification. We investigated several
possibilities of including spatial information about the
location of the components in the detection process. The
best performance was achieved with a system in which
the detection of the components was confined to small re-
gions around the expected positions of the components.
We also described a new method for learning relevant
components for face detection and identification which
is based on iteratively growing components in directions
which minimize the error on a cross-validation set.

For face identification we used the component-based
face detector in the training and testing stages to find the
face in the image and to locate a set of reference points
within the face. Around these points we extracted compo-
nents specifically learned for identifying faces and clas-
sified them with our two-layered identification module.
Two separate tests on a face detection and identification
database showed that the component-based detector by
itself and the combination of component-based detection
and identification modules outperformed the global clas-
sifiers. In both cases we achieved improvements in the
classification accuracy of about 25% on a test set without
occlusions and 15% on a test set with occlusions.
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Notes

1. Readers who are interested in large scale face identification
databases are referred to Gross (2005) and Phillips et al. (2005).

2. The faces were rotated in depth from −30◦ and 30◦ rotation in
depth in 5◦ steps. The faces were illuminated by ambient light and
a single directional light pointing towards the center of the face.
The position of the light source varied between −30◦ and 30◦ in
azimuth and between 30◦ and 60◦ in elevation.

3. In the training set, the faces were rotated in depth from −30◦ to
30◦ in 6◦ increments. In the CV set, the rotation in depth ranged
from −33◦ to 27◦ in 6◦ increments with 4±◦ rotation in the image
plane. For training, we rendered the 3D heads with 28 illumination
models at each pose, for validation we used 18 slightly different
models.

4. In our previous system (Heisele et al., 2001) we used a bound on the
expected generalization error which was computed on the training
set to control the growing direction.

5. The expected position of a component is the mean position of the
component determined across all training images.

6. Each test image was scaled 10 times in a range from 58 × 58 to 90
× 90 pixels. The 58 × 58 classification window was slid across the
scaled images in steps of one pixel.

7. The classifier is called haarclassifier 11 frontal 11 default.xml in
OpenCV RC1.

8. Yet another way of computing the ROC curve was used in Viola
and Jones (2004), where layers of the hierarchy were removed to
generate points on the ROC curve.

9. The training set was recorded with an Olympus C-3040 digital still
camera with 3.3 megapixels resolution. The test set was recorded
with a Sony DFW-VL 500 video camera with at a resolution of
640 × 480 pixels.

10. We ran experiments with PCA dimensions ranging from 30 to 400.
Above 300 there was no significant improvement in classification
performance.

11. As for the previous experiments, a global component was added for
face identification.

12. The patch dimensions were uniformly chosen from an interval of
10% to 30% of the image dimensions.
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