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Most electrophysiology studies analyze the activity of each neuron
separately. While such studies have given much insight into properties
of the visual system, they have also potentially overlooked important
aspects of information coded in changing patterns of activity that are
distributed over larger populations of neurons. In this work, we apply
a population decoding method to better estimate what information is
available in neuronal ensembles and how this information is coded in
dynamic patterns of neural activity in data recorded from inferior
temporal cortex (ITC) and prefrontal cortex (PFC) as macaque mon-
keys engaged in a delayed match-to-category task. Analyses of activ-
ity patterns in ITC and PFC revealed that both areas contain “abstract”
category information (i.e., category information that is not directly
correlated with properties of the stimuli); however, in general, PFC
has more task-relevant information, and ITC has more detailed visual
information. Analyses examining how information coded in these
areas show that almost all category information is available in a small
fraction of the neurons in the population. Most remarkably, our results
also show that category information is coded by a nonstationary
pattern of activity that changes over the course of a trial with
individual neurons containing information on much shorter time
scales than the population as a whole.

I N T R O D U C T I O N

The concept of population coding, in which information is
represented in the brain by distributed patterns of firing rates
across a large number of neurons, arguably dates back over
200 years (McIlwain 2001). Yet, despite this long concep-
tual history, and an extensive amount of theoretical work on
the topic (Rumelhart et al. 1986; Seung and Sompolinsky
1993; Zemel et al. 1998), most electrophysiological studies
still examine the coding properties of each neuron individ-
ually.

While much insight has been gained from studies analyz-
ing the activity of individual neurons, these studies can
potentially overlook or misinterpret important aspects of the
information contained in the joint influence of neurons at the
population level. For example, many analyses make infer-
ences about what information is in a given brain region
based on the number of responsive neurons or on the
strength of index values that are averaged over many

individual neurons. However, much theoretical and experi-
mental work (Olshausen and Field 1997; Rolls and Tovee
1995) has indicated that information can be coded in sparse
patterns of activity. Under a sparse representation, a brain
region that contains fewer responsive neurons during a
particular task might actually be more involved in the use of
that information, and averaging over many neurons might
dilute the strength of the effect, which could give rise to a
misinterpretation of the data.

Another shortcoming of most single-neuron analyses is
that they do not give much insight into how information is
coded in a given brain region. Several theoretical studies
have examined how information is stored in ensembles of
units including attractor networks, synfire chains (Abeles
1991) and probabilistic population codes (Zemel et al. 1998)
among others. However, because of the paucity of popula-
tion analyses of real neural data, there is currently little
empirical evidence on which to judge the relative validity of
these models.

To better understand the content and nature of information
coding in ensemble activity, we used population decoding tools
(Duda et al. 2001; Hung et al. 2005; Quiroga et al. 2006;
Stanley et al. 1999) to analyze the responses of multiple
individual neurons in inferior temporal cortex (ITC) and pre-
frontal cortex (PFC) recorded while monkeys engaged in a
delayed match-to-category task (DMC) (Freedman et al. 2003).
Previous individual neuron analyses of these data had sug-
gested that ITC is more involved in the processing of currently
viewed image properties, whereas PFC is more involved in
signaling the category and behavioral relevance of the stimuli
and in storing such information in working memory (Freedman
et al. 2003). Here, by pooling the activity from many neurons,
we are able to achieve a finer temporal description of the
information flow, and we can better quantify how much of the
category information in these areas is due to visual properties
of the stimuli versus being more abstract in nature. Addition-
ally, by looking at the activity in a population over time, we
find that the selectivity of those neurons that contain abstract
category information changes rapidly. Information is being
continually passed from one small subset of neurons to another
subset over the course of a trial. This work not only clarifies the
roles of ITC and PFC in visual categorization, but it also helps
to constrain theoretical models on the nature of neural coding
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in these structures (Riesenhuber and Poggio 2000; Serre et al.
2005).

M E T H O D S

Behavioral task and recordings

We used the data recorded in the study of Freedman et al. (2003).
Briefly, responses of 443 ITC and 525 PFC neurons were recorded
from two Rhesus Macaque monkeys as the monkeys engaged in a
delayed match-to-category task. Each DMC trial consisted of a se-
quence of four periods: a fixation period (500-ms duration), a sample
period in which a stimulus was shown (600-ms duration), a delay
period (1,000 ms), and a decision period in which a second stimulus
was shown and the monkey needed to make a behavioral decision

(Fig. 1A). The stimuli used in the task were morphed images gener-
ated from three prototype images of cats and three prototype images
of dogs (Fig. 1, B and C). A morph stimulus was labeled a “cat” or
“dog” depending on the category of the prototype that contributed
�50% to its morph. During the sample period of the task, a set of 42
images (Fig. S11) were used that consisted of the six prototype images
and morphs that were taken at four even intervals between each dog
and cat prototype. The stimuli shown in the decision period consisted
of random morphs that were �20% away from the cat/dog category
boundary, so that the category that these stimuli belonged to was
unambiguous. The monkeys needed to release a lever if the sample-
stimulus matched the category of the decision-stimulus to receive a

1 The online version of this article contains supplemental data. Additional
information can be found at http://cbcl.mit.edu/emeyers/jneurophys2008.

A

B

C

FIG. 1. Organization of the stimuli and behavioral task. A: time course of the delayed match to category experiment. B: an example of 1 of the 9 morph lines
of the stimuli from the cat 1 prototype to the dog 1 prototype (the actual stimuli used in the experiment were colored orange) (see Freedman et al. 2002). C: the
6 prototype images used in the experiment. All the stimuli used in the experiment were either the prototype images, or morphs between the cat (C) and dog (D)
prototypes.
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juice reward (or to continue to hold the lever and release it for a
second decision-stimulus in the nonmatch trials). Performance on the
task was �90% correct. Figure 1 illustrates the time course of an
experimental trial, one morph line used in the experiment, and the six
prototype dog and cat images. The experimental design and record-
ings were previously reported by Freedman et al. (2001, 2003); and
more details about the stimuli, the task, and the recordings can be
found in those publications.

DATA ANALYSIS. To estimate the information conveyed by a neu-
ronal ensemble about a particular stimulus or behavioral variable, we
used a decoding-based approach (Hung et al. 2005; Quiroga et al.
2006). We trained a pattern classifier on the firing rates from a
population of m neurons recorded across k trials (i.e., we have k
training points in Rm, where Rm is an m-dimensional vector space).
For each trial, one of c different conditions is present, and the
classifier “learns” which pattern of activity across the m neurons is
indicative that condition ci was present. We assessed how much
information is present in the population of neurons by using a “test
data set” (firing rates from the same m neurons, but from a different
set of h trials) and quantifying how accurately the classifier could
predict which condition ci was present in these new trials. Classifier
performance was evaluated and reported throughout the text as the
percentage of test trials correctly labeled. In the text we use the terms
“decoding accuracy” and “information” interchangeably because
there is an injective monotonic mapping between these two measures
(Gochin et al. 1994; Samengo 2002). Variables (i.e., different groups
of conditions) we decoded include 1) which of the 42 stimuli was
shown during the sample period (c � 42), 2) the category of the
stimulus shown during the sample period (c � 2), 3) the category of
the stimulus shown during the decision period (c � 2), and 4) whether
a trial was a match or nonmatch (c � 2). Occasionally, in the text we
are informal and we say we trained a classifier on a given set of
images X, by which we mean we trained the classifier on neural data
that was recorded when images in set X were shown.

Because most of the neurons used in these analyses were recorded
in separate sessions, it was necessary to create pseudo-populations
that could substitute for simultaneous recordings. Although creating
these pseudo-populations ignores correlated activity between neurons
that could potentially change estimates of the absolute level of
information in the population (Averbeck et al. 2006), having simul-
taneous recordings would most likely not change the conclusions
drawn from this work because we are mainly interested in relative
comparisons over time and between brain regions.

To create this pseudo-population for the decoding of identity
information (i.e., which of the 42 stimuli were shown during the
sample period) the following procedure was used. First we eliminated
all neurons that had nonstationary trends (those with an average firing
rate variance in 20 consecutive trials was less than half the variance
over the whole session). Because the stimuli were presented in
random order, the average variance in 20 trials should be roughly
equivalent to the variance over the whole session (only 42 ITC and 34
PFC neurons met the trend criterion, and the decoding results were not
significantly different when these neurons were included). Next we
found all neurons that had recordings from at least five trials for each
of the 42 stimuli shown in the sample period. This left 283 ITC and
332 PFC neurons for further analysis. From the pools of either ITC
neurons or PFC neurons we applied the following procedure sepa-
rately at each time period.

First, 256 neurons were randomly selected from the pool of all
available neurons. This allowed a fair comparison of ITC to PFC even
though there were more neurons available in the PFC pool.

Second, for each neuron, we randomly selected the firing rates from
five trials for each of the 42 stimuli.

Third, the firing rates of the 256 neurons from each of the five trials
were concatenated together to create 210 data points (5 repetitions �
42 stimuli) in R256 space.

Fourth, a cross-validation procedure was repeated five times. In
each repetition, four data points from each of the 42 classes were used
as training data and one data point from each class was used for
testing the classifier (i.e., each data point was only used once for
testing and 4 times for training). Prior to training and testing the
classifier, a normalization step was applied by subtracting the mean
and dividing by the SD for each neuron (the means and SD were
calculated using only the data in the training set). This z-score
normalization helped ensure that the decoding algorithm could be
influenced by all neurons rather than only by those with high firing
rates. Similar results were obtained when this normalization was
omitted.

Fifth, the whole procedure from steps 1–4 was repeated 50 times to
give a smoothed bootstrap-like estimate of the classification accuracy.
The main statistic shown in Figs. 2–7 is the classification accuracy
averaged over all the bootstrap and cross-validation trials.

A similar procedure was used to create pseudo-population vectors
for decoding of sample-stimulus category, decision-stimulus category,
and match-nonmatch information as shown in Fig. 2, except that 50
data points for each class were used in each of the five cross-
validation splits (i.e., there were 400 training points and 100 test
points), and the trial condition labels were changed to reflect the
information that we were trying to decode. For the decoding of
“abstract category” information in Figs. 3–7, the procedure was used
exactly as described in the preceding text except that the 42 identity
labels were remapped to their respective dog and cat categories, and
different prototypes were used for training and testing (see section on
decoding abstract category information).

Unless otherwise noted, all figures that show smooth estimates of
classification accuracy as a function of time are based on using firing
rates in 150-ms bins sampled at 50-ms intervals with data from each
time bin being classified independently. Because the sampling interval
we used is shorter than the bin size (50-ms sampling interval, 150-ms
time bin), the mean firing rates of adjacent points were calculated
using some of the same spikes, leading to a slight temporal smoothing
of the results.

In the body of the text, we also report classification accuracy
statistics. Unless otherwise stated, classification accuracy results from
the sample periods are reported for bins centered at 225 ms after
sample stimulus onset, results from the delay period are reported for
525 ms after sample stimulus offset, and results from the decision
period are reported for 225 ms after decision stimulus offset (this
corresponds to 725, 1,625, and 2,325 ms after the start of a trial, with
each bin width being 150 ms). The results reported for “basic”
decoding accuracies are the means � 1 SD of the decoding accuracies
over all the bootstrap trials and cross-validation splits. The results
reported for decoding abstract category information are the average
�1 SD of basic decoding results taken over the nine combinations of
training and test splits (see the section on decoding abstract category
information for more details). Also, because there are two stimuli
presented in each trial, to avoid confusion when reporting basic decoding
results, we denote the first stimulus shown as the SAMPLE-STIMULUS
and the second stimulus shown as the DECISION-STIMULUS with
capitalized letters used to avoid confusion with the sample, delay, and
decision periods (which are time periods where properties of these
stimuli can be decoded). It should be noted that in this paper, we refer
to the time period after the second stimulus is shown as the decision
period rather than the test period as used by Freedman et al. (2003) to
avoid confusion with the test set that is used to evaluate the trained
classifier.

All results reported in this paper use a correlation coefficient-based
classifier. Training of this classifier consists of creating c “classifica-
tion vectors” (where c is the number of classes/conditions used in the
analysis), and each classification vector is simply the mean of all the
training data from that class (thus each classification vector is a point
in Rm, where m is the number of neurons). To assess to which class
a test point belongs, the Pearson’s correlation coefficient is calculated
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between the test point and each classification vector; a test data point
is classified as belonging to the class ci, if the correlation coefficient
between the test point and the classification vector of class ci is greater
than the correlation coefficient between the test point and the classi-
fication vector of any other class. The classification accuracy reported
is the percentage of correctly classified test trials.

There are several reasons why we use a correlation coefficient-
based classifier. First, because this is a linear classifier, applying the
classifier is analogous to the integration of presynaptic activity
through synaptic weights; thus decoding accuracy can be thought of as
indicative of the information available to the postsynaptic targets of
the neurons being analyzed. Second, computation with this classifier
is fast, and it has empirically given classification accuracies that are
comparable to more sophisticated classifiers such as regularized least
squares, support vector machines and Poisson naı̈ve Bayes classifiers,
which we have tested on this and other data sets (see Supplemental
Fig. S2). Third, this classifier is invariant to scalar addition and
multiplication of the data, which might be useful for comparing data
across different time periods in which the mean firing rate of the
population might have changed. And finally, this classifier has no free
adjustable parameters (that are not determined by the data) which
simplifies the training procedure.

For several analyses, we trained a classifier on one condition and
tested the classifier on a different related condition. These analyses
test how invariant the responses from a population of neurons are to
certain transformations, and they help to determine whether a popu-
lation of neurons contains information beyond what is directly present
in the stimulus itself. We also performed analyses in which a classifier
is trained with data from one time period and tested with data from a
different time period; this allowed us to assess whether a pattern of
activity that codes for a variable at one time period is the same pattern
of activity that codes for the variable at a later time period. It is
important to emphasize that for all analyses, training and test data
come from different trials. Finally, for several analyses, we calculated
the classification accuracy using only small subsets of neurons, ranked
based on how category-selective these neurons were. The rank order
was based on a t-test applied to all cat trials versus all dog trials on the
training dataset, and the k neurons with the smallest P values were
used for training and testing. This “greedy” method of feature selec-
tion is not guaranteed to return the smallest subset that will achieve
the best performance, so the readout accuracies obtained with this
feature selection method might be an underestimate of what could be
obtained with an equivalent number of neurons from the same pop-
ulation if an ideal feature selection algorithm was applied.

Finally, for one set of analyses (Fig. 8), we estimated the amount of
mutual information (MI) between the category of the stimuli s and
individual neurons’ firing rates r, using the average firing rates in 100-ms
bins sampled at 10-ms intervals. To compute the mutual information, we
assumed the prior probability of each stimulus category was equal, and
we used the standard formula, I � �s,rP[r, s] log2 (P[r, s]/P[r] P[s])
(Dayan and Abbott 2001). The joint probability distribution between
stimulus and response, P[r, s], was estimated from the empirical
distribution using all trials. Although there exists potentially more
accurate methods for estimating mutual information (Paninski
2003; Shlens et al. 2007), because our results do not depend
critically on the exact MI values, we preferred the simplicity of this
method.

Additional material can be found at http://cbcl.mit.edu/people/
emeyers/jneurophys2008/.

R E S U L T S

Decoding information content in ITC and PFC

BASIC RESULTS. We used a statistical classifier to decode
information from neuronal populations that were recorded as
monkeys engaged in a delayed match-to-category task (Fig.

1A) (Freedman et al. 2003). Figure 2 shows the accuracy levels
obtained when decoding four different types of information.
The decoding of identity information (i.e., which of the 42
stimuli was shown during the sample period) is shown in Fig.
2A and provides an indication of how much detailed visual
information is retained despite the variability in spike counts
that occur from trial to trial. Given the high physical similarity
among the images along a given morph line (Fig. 1B), this is a
very challenging task. There was a significant amount of
information only during the sample period when the stimulus
was visible, and there was much more information in ITC than
in PFC (17.5 � 5.5 vs. 5.9 � 3.5% respectively, chance �
1/42 � 2.4%). Because information about the details of the visual
stimuli was not relevant for the task in which the monkey was
engaged, these results are consistent with the notion that ITC is
involved in the detailed analysis of the visual information that
is currently visible, whereas PFC activity only contains the
information necessary for completing the task (Freedman et al.
2001; Riesenhuber and Poggio 2000).

Next we examined decoding the category of the SAMPLE-
STIMULUS (i.e., whether the stimulus shown at the beginning
of the sample period was a cat or a dog, Fig. 2B). When the
SAMPLE-STIMULUS was first presented, ITC had a slightly
higher accuracy level than PFC (92.0 � 2.8 vs. 81.3 � 4.3%,
at t� 225 ms, chance � 50%). However, by the middle of the
sample period (t � 425 ms after stimulus onset), the informa-
tion in these two areas was approximately equal (82.1 � 4.0 vs.
82.0 � 4.2%). During the delay and decision periods, PFC had
more category information about the SAMPLE-STIMULUS
than ITC [delay: 66.7 � 4.1% (PFC) vs. 56.6 � 4.8% (ITC);
decision: 88.4 � 4.3% (PFC) vs. 77.9 � 4.4% (ITC), chance �
50%]. Because category information is behaviorally relevant to
the monkey in this task, these results support the role of the PFC
in storing task-relevant information in memory during the delay
period (Miller and Cohen 2001). That ITC initially had more
information about the category of the SAMPLE-STIMULUS is
largely due to ITC having more information related to visual
properties of the stimuli, and this visual information is being
used by the classifier to decode the category of the stimuli (see
section on decoding abstract category information in the fol-
lowing text).

Figure 2C shows accuracy levels from decoding the
category of the DECISION-STIMULUS (i.e., the stimulus that
is presented in the beginning of the decision period). ITC had
slightly more information about the category of the DECISION-
STIMULUS than PFC during the decision period (93.9 � 2.7
vs. 81.1 � 4.3%). This is probably due to the combination of
visual and abstract category information by the classifier and
because there is more visual information in ITC the perfor-
mance level is higher there. In contrast, PFC showed higher
accuracy levels when decoding whether a trial was a match or
nonmatch trial during the decision period (92.3 � 2.7 vs.
60.5 � 4.8% Fig. 2D), which is again consistent with PFC
containing more task-relevant information than ITC.

In addition to comparing ITC to PFC, it is also instructive to
directly compare different types of information within each of
these areas. Figure 2, E and F, compares the decoding accuracies
for three different variables: whether a trial is a match/nonmatch
trial (brown), the category of the DECISION-STIMULUS
(green), and the category of the SAMPLE-STIMULUS (purple)
(we start the comparison in the middle of the delay period
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because there is no information about trial status and DECISION-
STIMULUS category until the decision period). Results from
ITC (Fig. 2E) reveal that during the decision period, there is
much more information about the category of the DECISION-
STIMULUS (green line) than about the category of the SAMPLE-
STIMULUS (purple line) or about whether a trial is a match or
nonmatch trial (brown). Also the match/nonmatch trial infor-
mation showed the longest latency. This pattern shows that the
variable that ITC has the most information about (of the 3
variables listed in the preceding text) is the most recently
viewed visual stimulus and that there is less information about
task-related variables. The pattern in PFC is quite different
(Fig. 2F), with the most information being about task-related
variables; i.e., whether a trial is a match or nonmatch trial. Also
the latency of the match/nonmatch status of a trial in PFC is the
same as the latency of information about the category of the
DECISION-STIMULUS (and shorter than the ITC latency in
the same task). It is also interesting to note that for both PFC
and for ITC, the information about the category of SAMPLE-

STIMULUS seems to increase just prior to the onset of the
DECISION-STIMULUS presentation. This anticipatory in-
crease of information might subserve the quick reaction times
seen in the experiment.

ABSTRACT CATEGORY INFORMATION. From a cognitive science
perspective, a category often refers to a grouping of objects
based on their behavioral significance, and objects within such
a group do not necessarily share any common physical char-
acteristics (Tanaka 2004). In Fig. 2B, however, the decoding
accuracy level for the category of the SAMPLE-STIMULUS is
influenced not only by the “abstract” behaviorally relevant
category of the stimulus but also by physical visual properties
of the image that are also predictive of the category that the
stimulus belongs to (see Supplemental Fig. S3 for more de-
tails). To better assess how much abstract category information
is in ITC and PFC that is related to the behavioral grouping of
the stimuli (and that not due to physical properties of the
stimuli), we trained a classifier on images derived from two

FIG. 2. Basic decoding results for 4 differ-
ent types of information. A–D: blue lines
indicates results from inferior temporal
cortex (ITC) and red lines indicate results
from prefrontal cortex (PFC; red, and blue
shaded regions indicate one SD over the
bootstrap-like trials). The 3 vertical black
lines indicate SAMPLE-STIMULUS on-
set, SAMPLE-STIMULUS offset, and DE-
CISION-STIMULUS onset from left to
right respectively. E and F: comparison of
SAMPLE-STIMULUS category decoding
accuracy (purple), DECISION-STIMULUS
category decoding accuracy (green), and
whether a trial is a match or nonmatch trial
(brown) for ITC (E) and PFC (F).
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dog prototypes and two cat prototypes and then tested the
classifier’s decoding accuracy on images derived from the
remaining dog and cat prototypes (by “derived from a proto-
type,” we mean the images that contain �60% of their morph
from a given prototype). The logic behind this analysis is that
if the within-category prototype images were just as visually
similar to each other as they are to the between-category
prototype images, then using different prototypes for training
and testing should eliminate the ability of visual feature infor-
mation to be predictive of which class a stimulus belongs to
(because there would be as many visual features shared be-
tween the training and test sets within the same category, as
there are between the two different categories; see Supplemen-
tal Fig. S3). Thus obtaining above chance classification per-
formance in this analysis would imply that a brain region had
more abstract category information. While determining the
visual similarity between two images is currently an ill-defined
problem, we note that the prototype images used in this
experiment did vary greatly in their visual appearance (Figs.
1C and S1). Therefore this decoding method should greatly
reduce the influence of visual features (see DISCUSSION for more
details on image similarity). In fact, because many of the
images used to test the classifier were morphs that were
blended with prototype images from the opposite category,
images from opposite categories were more similar in terms of
the morph coefficients than images from the same category
(similar results were obtained when we did not use images that
were morphs between the training and test set prototypes; see
Supplemental Fig. S4B).

Figure 3A, shows the decoding results of this more ab-
stract category information for ITC (blue) and PFC (red)
averaged over all nine training/test permutations [e.g., train
on (c1, c2 vs. d1, d2) test on (c3, d3); training on (c1, c2 vs.
d1, d3) tested on (c3, d2) etc.]. Supplemental Fig. S4A
shows the results for the nine individual runs for both PFC
and ITC; all individual results are the average of 50 boot-
strap-like trials. During the sample period when the stimuli
are first shown, PFC has as much abstract category infor-
mation as ITC. During the delay and decision periods, PFC
has more category information than ITC. This strongly
suggests that the larger amount of category information in
ITC during the sample period seen in Fig. 2B is due to the
classifier combining category information in a visually
based format with information in a more abstract format.

Figure 3, B and C compare the visual plus abstract category
information (purple trace) that was shown in Fig. 2B with the
abstract category information (orange trace) that was shown in
Fig. 3A, for ITC (B) and PFC (C). For ITC, most of the
category information during the sample period is visual; how-
ever, during the delay and decision periods, almost all the
category information is abstract. PFC shows a similar pattern;
however, there is more abstract category information (and less
visual category information) during the sample period than for
ITC. Thus both ITC and PFC have category information in a
visual format while the stimulus is visible, and both represent
information in an abstract, task-relevant format during the
delay and decision period. However, the overall ratio of ab-
stract category information relative to total category informa-
tion is greater in PFC than in ITC during the sample period.

FIG. 3. Decoding task-relevant “abstract” category information. A: decod-
ing accuracies for ITC (blue) and PFC (red) when training on data from 2 dog
and 2 cat prototype images and testing on the remaining dog and cat prototype
images. The results are the average over all 9 permutations of training/test
splits and the shaded results show the SDs over the 9 permutations (the
individual traces are shown in Supplementary Fig. S4A). B and C: comparison
of visual plus category stimulus decoding accuracies (purple line) to abstract
category information (orange line) for ITC (B) and PFC (C). Note that there is
a larger difference between these two types of information in ITC compared
with the difference between these information types seen in PFC. This is a
strong indication that the high SAMPLE-STIMULUS category decoding
accuracies seen in ITC in Fig. 2B are largely due to visual information and not
abstract category information during the sample period. During the decision
period, for both ITC and PFC, most of information about the category of the
SAMPLE-STIMULUS is in a more abstract representation, as there is little
difference between abstract category information and “basic” category infor-
mation during this period.
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Coding of information in ITC and PFC

COMPACT AND REDUNDANT INFORMATION. In addition to assess-
ing what information is contained in ITC and PFC, the decod-
ing analysis also allows us to examine how information is
coded across a population of neurons. One important question
of neural coding concerns whether information is contained in
a widely distributed manner such that all neurons are necessary
to represent a stimulus or if at a particular point in time, there
is a smaller “compact” subset of neurons that contains all the
information that the larger population has (Field 1994). To
assess if there is a smaller compact subset of neurons in ITC
and PFC conveying as much information as the larger popu-
lation using population decoding, we first selected the “best” k
neurons using the training data (where k � 256) and then trained
and tested our classifier using only these neurons (Fig. 4). The
best k neurons were defined as those neurons with the smallest
P values based on a t-test applied to all cat-trials versus all
dog-trials on the training data set (see METHODS). The selection
process was done separately for each time bin. Using the 16
best neurons, we were able to extract almost all the information
that was available using 256 neurons at almost all time points
for both PFC and ITC. The level of compactness of informa-
tion was particularly strong in PFC during the decision period

where, strikingly, eight neurons contained nearly all the infor-
mation (decoding accuracy � 78.2 � 1.2%) that was available
in the whole population (79.4 � 1.7%). It should also be noted
that because our algorithm for selecting the best neurons works
in a greedy fashion, the top k neurons selected might not be the
best k neurons available in combination. Therefore all the
information present in the entire population could potentially
be contained in even fewer neurons. We also examined if there
is a smaller subset of neurons that contains all the identity
information (Supplemental Fig. S5) and found that for ITC,
identity information seems to be less compact with the decod-
ing accuracy not saturating until around 64 neurons. We
speculate that this might be related to the fact that it takes more
bits of information to code 42 stimuli than to code the binary
category variable and also perhaps because identity information is
not relevant for the task the monkey is engaged in.

Redundancy allows a system to be robust to degradation of
individual neurons or synapses. This robustness constitutes a
key feature of biological systems. To asses if there is redundant
information present in the population of neurons, we again
selected the k best neurons from the training set, but this time
we excluded these neurons from training and testing and used
the remaining 256 	 k neurons for our analyses. We note that
this analysis aims to assess whether there is redundant infor-
mation (as opposed to estimating how much redundant infor-
mation there is in the Shannon sense of redundancy). Figure 5
compares the classifier’s performance using the best 64 neu-
rons to its performance excluding the best 64 neurons. The best
64 neurons contain as much information as the whole popula-
tion (magenta line). However, even when these best 64 neurons
are excluded, and the remaining 192 neurons are used instead,
classification performance is above chance at almost all time
points (green line). Because the best 64 neurons contain as
much information as the whole population, the fact the exclud-
ing these neurons does not lead to chance classification per-
formance implies that these remaining 192 neurons contain a
nonnegligible amount of redundant information with the best
64 neurons. In fact, even when half the neurons are removed,
decoding accuracy is still above chance at almost all time
points (Supplemental Fig. S6).

TIME-DEPENDENT CODING OF INFORMATION. Another interesting
question in neural coding is whether a given variable is coded
by a single pattern of neural activity in a population, as in a
point attractor network (Hopfield 1982), or whether there are
several patterns that each code for the same piece of informa-
tion (Laurent 2002; Perez-Orive et al. 2002). To address this
question, we trained a classifier with data from one time bin
relative to stimulus onset and tested the classifier on data from
different time bins (in all the results reported in the preceding
text, training and testing were done using the same time period
relative to stimulus onset). If, at all time periods, the same
pattern of activity is predictive of a particular variable, then the
decoding accuracy should always be highest (or at least should
not decrease) when training a classifier with data from time
periods that have the maximum decoding accuracy levels
because the data from these time periods presumably have the
least noise and would therefore lead to the creation of the best
possible classifier. Alternatively if the pattern of activity that is
indicative of a relevant variable changes with time (and is
time-locked to the onset of a stimulus/trial), then high decoding

A

B

FIG. 4. Readout using the “best” 2, 4, 8, or 16 neurons, compared with
readout using all 256 neurons, for ITC (A) and PFC (B). As can be seen for
almost all time periods, the abstract category information available in whole
population is available in only �16 neurons. The best neurons were deter-
mined based on t-test between cats and dogs using the training data. Because
the algorithm used to select the best neurons works in a greedy manner and is
not necessarily optimal, the information reported in the subsets of neurons is
an underestimate of how much information would be present if the optimal k
neurons were selected.
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accuracies would only be achieved when using training and
testing data from the same time period.

Figure 6, A and B, shows accuracy levels for decoding
abstract category information when training a classifier with
data from one time period (indicated by the y axis) and testing
with data from a different time period (indicated on the x axis).
As can be seen for both ITC and PFC, the highest decoding
accuracies for each time bin occur along the diagonal of the
figure, indicating that the best performance is achieved when
training and testing is done using data from the same time bin
relative to stimulus/trial onset. Additionally, for ITC, the de-
coding performance is also high when training using data from
the sample period and testing using data from the decision
period and vice versa, whereas for PFC, there seems to be little
transfer between any different time periods. The pattern of
transfer between the sample and the decision periods in ITC
might indicate that there is indeed one pattern of activity in ITC
that codes for the abstract category of the stimulus regardless
of time; alternatively, this result might be due to visual infor-
mation that is similar in the sample and decision stimuli, as the
decision stimuli were created from random morphs between
the prototype images. Figure 6, C and D, compares the decod-
ing accuracies from training on three of these “fixed” time
points (colored lines) to training and testing a classifier using

data from the same time period (black lines) in a format that is
similar to Figs. 2 and 3 (i.e., these are plots of 3 rows of Fig.
6, A and B, at time points during the sample, delay, and
decision periods and compares them to the results in Fig. 3A).
These plots again show that the highest decoding accuracy
occurs when training and testing using data from the same time
period, which implies that indeed the pattern of activity that
codes for a particular piece of information changes with time.

Next we tested whether this changing pattern of activity was
only due to neural adaptation in a fixed set of neurons or
whether indeed different neurons were carrying the relevant
information at different points in time. To address this ques-
tion, we conducted analyses in which we eliminated the best 64
neurons (of 256 random neurons selected on each bootstrap trial)
at one 150-ms time period (indicated on the y axis in Fig. 7) and
training and test data were taken from a different 150-ms time
period (indicated on the x axis). If the same small subset of
neurons codes for abstract category information at all time
periods, then eliminating these neurons from one time period
should result in poor decoding accuracy at all time periods.
Alternatively if different small subsets of neurons contain the
abstract category information at different time periods, then
there should only be a decrease in performance in the time
period where the best neurons were removed. Results for both
ITC and PFC show a clear pattern of lower decoding accura-
cies along the diagonal but largely unchanged decoding accu-
racies almost everywhere else, which indicates that different
neurons contain the category information at different time
points in a trial. Figure 7 also clearly shows that the neural
code is changing faster than changes in the stimuli as illustrated
by the fact that there is also a decrease only along the diagonal
during the sample, delay, and decision periods even though the
stimulus is not changing during these times. Additionally,
Supplemental Fig. S7 shows that the neurons that code for
identity information also change through the course of a trial,
although the changes in code seem to be much less dramatic
than is seen for the changes in code for abstract category
information.

To further examine the duration of selectivity for individual
neurons, we calculated an estimate of the mutual information
(MI) between the category of the stimulus, and the average
firing rate of neurons in 100-ms bins (see METHODS). Figure 8
shows the MI as a function of time for the four neurons that had
highest MI at four different time bins. As can be seen for both
PFC and ITC, individual neurons have short time windows of
selectivity as expected from the results showing changing
patterns of coding at the population level. It is also interesting
to compare neurons 1 and 4 in Fig. 8A, where we can see two
ITC neurons that are selective at slightly different times during
the sample period even though the stimulus is constant during
this time. This further supports the point that individual neu-
ron’s selectivity are occurring on a faster time scale than the
changes in the stimuli.

D I S C U S S I O N

We applied population decoding methods to neuronal spik-
ing data recorded in PFC and ITC to gain more insight into
what types of information are contained in these regions as
well as how information is represented in these regions. By
pooling information from hundreds of neurons, we were able to

A

B

FIG. 5. Illustration of redundant information in ITC (A) and PFC (B). The
magenta line indicates the readout performance when the top 64 neurons were
used, and the green line indicates when the top 64 neurons were excluded and the
remaining 192 neurons were used. As can be seen, the top 64 neurons achieve a
performance level that is as good as using the whole population of 256 neurons.
However, even when these neurons are excluded, readout is above chance,
indicating that there is redundant information in these populations.
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observe the time course of the flow of information in these
areas with a fine time scale. Results from basic decoding
analyses (Fig. 2) showed that ITC contained more information
related to the currently viewed stimulus than PFC, while PFC
contained more task-relevant information than ITC, which is
largely consistent with the results originally reported by Freedman
et al. (2003). The finer temporal precision in our analyses also
revealed an anticipatory response in both ITC and PFC, in which
information about the category of the SAMPLE-STIMULUS
reemerged just prior to the onset of the DECISION-STIMULUS,
which seems similar to the increase in firing rate seen just prior
to the onset of the decision period reported by Rainer et al.
(Rainer and Miller 2002; Rainer et al. 1999) in macaque
delayed match-to-sample experiments. We speculate that this
anticipatory reemergence of category information might be
involved in preparing the network for processing the imminent
decision stimulus as soon as it is shown, which could account
for the monkeys’ fast reaction times.

The ability to train a pattern classifier on data of one type
and test how well the classifier generalizes to data recoded

under different conditions is very useful for obtaining more
compelling answers to several questions. By training a classi-
fier on data from a subset of images from one category and then
testing on data recorded when a different disjoint subset of
images was shown, we were able to get a better estimate of
how much abstract category information is contained in both
ITC and PFC (for more information about PFC’s role in other
categorization tasks, see Nieder et al. 2002; Shima et al. 2007).
Results from our analysis of abstract category information
revealed that there is initially as much abstract category infor-
mation in ITC as PFC, which was not seen in the original
analyses by Freedman et al. (2003) due to the long length of the
time periods used in their analyses as well as potential biases
introduced by only using “selective” neurons when creating
category-selective indices (see INTRODUCTION).

The fact that there initially appears to be as much abstract
category information in ITC as PFC (Fig. 3) raises several
questions about ITC’s role in categorization. One of the sim-
plest explanations for the presence of abstract category infor-
mation in ITC is that despite the morph paradigm used, the

A C

DB

FIG. 6. Evaluating whether the same
code is used at different times for abstract
category information. A: in ITC there is
some similarity in the neural code for ab-
stract category information in the sample and
the decision periods, as can be seen by the
green patches near the top right and bottom
left of the figure. Also there appears to be
two different codes used during the sample
period as can be seen by the two blob regions
occurring 775–1,275 ms after the start of the
trial. B: for PFC, the code for abstract cate-
gory information seems to be constantly
changing with time as indicated by the fact
that the only high decoding accuracies are
obtained along the diagonal of the plot. C
and D: examples of decoding accuracies us-
ing 3 fixed training times from the sample,
delay and decision periods (colored lines)
compared decoding accuracies obtained
when training and testing using the same
time period (black line) for ITC (C) and PFC
(D); (each of these plots corresponds to 1
row from the from A or B and the black line
corresponds to the diagonal of this figure and
is the same line as shown in Fig. 3A). These
figures again illustrate that the highest per-
formance is always obtained when training
and testing is done using the same time bin
relative to stimulus/trial onset, which sug-
gests that the neural coding of abstract cate-
gory information is time-locked to stimulus/
trial onset.
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prototype images from the same category are more visually
similar to each other than they are to the images from the other
category (i.e., the 3 cat prototype images are more similar to
each other than they are to the dog prototype images). If this
was the case, then the classifier would be able to generalize
across images from different prototypes from the same cate-
gory based purely on visual information, which could explain
the results (Sigala and Logothetis 2002). Analyses using a
computational model of object recognition described in Serre
et al. (2007) indeed suggest that prototype images are slightly
more similar to each other than to prototypes from the opposite
category. However, the level of similarity seems to be weaker
than what is observed in the neural data. A direct test of
whether visual image properties is giving rise to our findings
could be done by running the same DMC experiment but using
a different category boundary as was previously done for PFC
(Freedman et al. 2001).

If indeed there is abstract category information in ITC that is
not due to visual cues, this suggests that there is a “supervised”
learning signal in ITC that is causing neurons in ITC to respond
similarly to stimuli from the same category. One possible
source of this supervised learning signal is that during the
course of the sample presentation, PFC extracts category in-
formation from the signals arising in ITC and feeds this
category information back to ITC (Tomita et al. 1999). How-
ever, with the resolution of our analyses, we could not detect
any clear latency differences between the category information
arising in PFC and ITC (see Supplemental Fig. S8). Given that
there could be a single synapse between neurons in these two
brain areas, the latency differences could be too small to detect
(Ungerleider et al. 1989). Alternatively, ITC could have ac-
quired abstract category information during the course of the
monkey being trained in the task. In this scenario, which is
similar to the model proposed by Risenhuber and Poggio
(2000), the activity of “lower level” neurons that are selective
to individual visual features present in particular stimuli are
pooled together by “higher level” neurons through a supervised
learning signal enabling these higher level neurons to respond
similarly to all members of a given category irrespective of the
visual similarity of individual members of the category. It
should be noted that more recent models (e.g., Serre et al.
2007) propose a supervised learning signal is only present in
PFC, while the presence of abstract category information in
ITC suggests this supervised learning signal might be organiz-
ing the response properties of neurons earlier in the visual
hierarchy (Mogami and Tanaka 2006); however these models
could be easily modified to incorporate a supervised learning
signal in stages before PFC. Because these monkeys have had
an extensive amount of experience with these stimuli, it is also
possible that a consolidation process has occurred when the
monkey learned the task. For category grouping behavior that
occurs on shorter time scales, it is possible that category
signals would only be found in PFC.

By analyzing data over long time intervals, most physiological
studies assume tacitly or explicitly that the neural code remains
relatively static as long as the stimulus remains unchanged. We
examined how stationary the neural code is by training the
classifier using data from one time period and then testing with
data from a different time period (Fig. 6). These analyses suggest
that the pattern of activity coding for a particular stimulus or
behaviorally relevant variable changes with time. Such results are

A

B

FIG. 7. Elimination of the best 64 neurons from the time period t1 (specified
on the y axis) and then training and testing with all the remaining 192 neurons
at time period t2 (as specified by the x axis) for ITC (A) and PFC (B).
Eliminating the best neurons from the training set at one time period only has
a large affect on decoding accuracy at that same time period and leaves other
time period unaffected as can be seen by the fact that there is only lower
performance long the diagonal of the figure. This indicates that the neurons in
the population that carry the majority of the information change with time.
Additionally, one can see a decrease only along the diagonal even during
periods where the stimulus is constant (areas between the black vertical bars).
This indicates that the neural code is changing at a faster rate than changes in
the stimulus.
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consistent with the findings of Gochin et al. (1994), in whose
study a paired-associate task was used to show that the pattern of
activity in macaque ITC that is indicative of a particular stimulus
during a sample period is different from the pattern of activity that
is indicative of the same stimulus during a second stimulus
presentation period. Also Nikolic et al. (2007) reported dynamic
changes in the weights of separating hyperplanes for discriminat-
ing between visual letters using data from macaque V1. These
observations suggest that the coding of particular variables
through changing patterns of activity might be a general property
of neural coding throughout the visual system. However, because
adaptation or other nonlinear scaling of firing rates could poten-
tially explain these results as an artifact of the decoding procedure
in these studies, we further tested how stationary the neural code
is by eliminating the best neurons from one time period and
testing the classifier on data from another time period (Fig. 7).
Results from this analysis show that there is only a temporally
localized drop in classification accuracy, which indicates that
different neurons carry information about the same variable at

different time periods. Additionally, analyses of mutual informa-
tion showed that most individual neurons are only selective for
short time windows. These observations are consistent with
the findings of Zaksis et al. (Zaksas and Pasternak 2006),
who used an ROC analysis to show that many neurons in
PFC and MT only have short time periods of selectivity.
Baeg et al. (2003) also showed that past and future actions
of rats can be decoded based on PFC activity during a delay
period even when neurons with sustained activity are ex-
cluded from the analysis; this again agrees with our obser-
vations showing that the pattern of neural activity that codes
information changes with time. While previous studies have
concluded that neurons with short periods of selectivity play
an important role in memory of stimuli, we also speculate
that these dynamic patterns of activity might be important
for the coding of a sequence of images so that the processing
of new stimuli do not interfere with those just previously
seen and could underlie the ability of primates to keep track
of the relative timing of events.

A

B

FIG. 8. Illustration showing that many in-
dividual neurons have short periods of selec-
tivity for ITC (A) and PFC (B). The figure
plots the 4 neurons for ITC and PFC that had
the highest the mutual information between
the category of the SAMPLE-STIMULUS
and neuron’s firing rate (firing rates where
calculated using 100-ms bin periods sampled
every 10 ms). As can be seen, most neurons
show high mutual information (MI) values
for only short time periods, which is what
is expected for a population code that
changes with time. It is also interesting to
compare neurons 1 and 4 in ITC (A) because
it shows that individual neurons have differ-
ent peak selectivity times even when the
stimulus being shown is constant. Thus the
changing of the neural code is not just due to
changes in the stimulus.
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An ongoing debate concerning the neural code is whether
information is transmitted using a “rate code” in which all
information is carried in the mean firing rate of a neuron
within a particular time window, or whether a temporal code
is used in which information is carried in by the precise
timing of individual spikes (deCharms and Zador 2000).
While the results in this paper cannot conclusively answer
which coding scheme is correct, they do give some insight
into this debate. First, because we decode mean firing rates
over 150-ms bins (and shorter time bins tended to achieve
lower decoding accuracies), our findings suggest that a large
amount of information is still present even when the precise
time of each spike is ignored (also see Hung et al. 2005).
While it is possible that superior decoding performance
could be achieved by using an algorithm that took exact
spike times into account, considering the high performance
level at certain time periods in the experiment (e.g., decod-
ing of match versus nonmatch trial information is over 90%
in PFC during the decision period, which is comparable to
the 90% correct animals’ performance), often there is not
much more information left to extract. Second, because our
results show that the pattern of neural activity that is
predictive of a particular variable changes with time and that
this change occurs on a faster time scale then changes in the
stimulus, these findings argue against a strict rate based
coding scheme in which all information about a stimulus is
coded by the firing rate alone. Thus our findings suggest that
neurons in ITC and PFC maintain information in their mean
firing rates over time windows on the order of a few hundred
milliseconds and that these periods of selectivity are time-
locked to particular task events (with different neurons
having different time lags), giving rise to a dynamic coding
of information at the population level.

Applying feature selection methods prior to using pattern
classifiers allowed us to characterize the compactness and
redundancy of information in ITC and PFC. Results from
these analyses revealed that at any one point in time, all the
abstract category information available is contained in a
small subset of neurons. However there still is a substantial
amount of redundant information between this small highly
informative subset of neurons and the rest of the more
weakly selective neurons in the rest of the population. While
other studies have examined sparse spiking activity in sev-
eral different neural systems (Hahnloser et al. 2002; Perez-
Orive et al. 2002; Quiroga et al. 2005; Rolls and Tovee
1995), and theoretical models have been proposed that
analyze the implication of this sparse activity (Olshausen
and Field 1997), our notion of compactness of information
differs from these measures because we are not focused on
whether neurons are firing, but rather we are focused on the
information content that is carried by this spiking activity. It
should also be noted that our notion of compactness of
information differs the notion compactness described by
Field (1994), because Field’s notion of compactness implies
that all neurons are involved in the coding for a stimulus,
while our results suggest that only a small subset of a larger
population of neurons contain the relevant information and
that this subset of neurons changes in time (thus our notion
of compactness could be equally well characterized as
sparseness of information, however given the strong asso-
ciation in the literature between the term sparseness and

firing rate, we found using this terminology to be confus-
ing). Thus our measure adds a new and potentially useful
statistic for understanding how information is coded in a
given cortical region.

The neuronal responses studied here were not recorded
simultaneously, and the creation of pseudo-populations can
alter estimates of the absolute amount of information that a
population contains because of noise correlations (Averbeck
and Lee 2006; Averbeck et al. 2006). However, we were
interested in relative information comparisons between differ-
ent time periods or between different brain regions, so our
conclusions would not be substantially altered by having data
from simultaneous recordings. Furthermore, empirical evi-
dence suggests that decoding using pseudo-populations returns
roughly the same results as when using simultaneously re-
corded neurons (Aggelopoulos et al. 2005; Anderson et al.
2007; Baeg et al. 2003; Gochin et al. 1994; Nikolic et al. 2007;
Panzeri et al. 2003). Our estimates of the absolute amount of
information in the population could also be affected by the
amount of data we have, the quality of the learning algorithms
(however, see Supplemental Fig. S2, which suggests this is not
an issue), and the features used for decoding. However, be-
cause in principle these issues affect all time points and brain
areas equally, relative comparisons should be largely unaf-
fected by them.

The ability to decode information from a population of
neurons does not necessarily mean that a given brain region is
using this information or that downstream neurons actually
decode the information in the same way that our classifiers do.
Our results using analyses in which the classifier is trained with
one type of stimuli and must generalize to a different but
related type of stimuli, supports the notion that the animal is
using this information because such generalization implies a
representation that is distinct from properties that are directly
correlated with the stimuli, and having such an abstract repre-
sentation coincidentally would be highly unlikely. For this
reason, most of the analyses in this paper have focused on
abstract category information (Figs. 3–7) because this infor-
mation meets our criteria of being abstracted from the exact
stimuli that are shown and hence is most likely utilized by the
animal.

Using population decoding to interpret neural data is impor-
tant because it examines data in a way that is more consistent
with the notion that information is actually contained in pat-
terns of activity across many neurons. By computing statistics
on random samples of neurons, most analyses of individual
neurons implicitly assume that each neuron is independent of
all others and that neural populations are largely homogenous.
However, such implicit assumptions are contrary to the pre-
vailing belief that brain regions contain circuits of heteroge-
neous cells that have different functions and is inconsistent
with empirical evidence (compact coding of information and
activity) seen in this and other studies. The methods discussed
in this paper can help align a distributed coding theoretical
framework with analysis of actual empirical data, which should
give deeper insights into the ultimate goal of understanding the
algorithms and computations used by the brain that enable
complex animals, such as humans and other primates, to make
sense of our surroundings and to plan and execute successful
goal-directed behaviors.
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