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Abstract

Recently, several powerful image features have been pro-
posed which can be described as spatial histograms of ori-
ented energy. For instance, the HoG [5], HMAX C1 [14],
SIFT [13], and Shape Context feature [4] all represent an
input image using with a discrete set of bins which accumu-
late evidence for oriented structures over a spatial region
and a range of orientations. In this work, we generalize
these techniques to allow for a foveated input image, rather
than a rectilinear raster. It will be shown that improved
object detection accuracy can be achieved via inputting a
spectrum of image measurements, from sharp, fine-scale im-
age sampling within a small spatial region within the target
to coarse-scale sampling of a wide field of view around the
target. Several alternative feature generation algorithms
are proposed and tested which suitably make use of foveated
image inputs. In the experiments we show that features gen-
erated from the foveated input format produce detectors of
greater accuracy, as measured for four object types from
commonly available data-sets. Finally, a flexible algorithm
for generating features is described and tested which is in-
dependent of input topology and uses ICA to learn appro-
priate filters.

1. Introduction

In the field of object detection, often it is the features
used to represent the input, rather than the statistical tech-
niques used to learn patterns of those features, that are the
key to accurate performance. Whereas the earliest detec-
tors used simple cues such as gray-scale values, wavelet
coefficients, or histograms of RGB values, modern tech-
niques can attribute much of their success to features such
as Lowe’s SIFT [13], Dalal’s Histogram of Oriented Gra-
dients (HoG) [5], the visual Bag-Of-Words [18], and hi-
erarchical networks of selectivity and invariance, such as
Poggio’s HMAX network, LeCun’s convolutional network,

Figure 1. An illustration of the difference between rectilinear left
and foveal right image sampling. Image features normally input
rectilinear image samples. This work explores the value of foveal
sampling.

among notable others [12, 14, 10, 9, 8].
The aim of this work is to improve upon two existing

image representations via adaptation to a foveated input.
Whereas most image features begin by ingesting image data
sampled at regular intervals, the aim of this work is to adapt
the HoG and HMAX feature to input a spectrum of bright-
ness values, sampled densely at a fine scale at the center of
the target, and coarsely further away, as illustrated in Fig. 1.

The motivation behind such an approach is twofold.
Firstly, biologically, the sensors of the vertebrate eye are
arranged in such a log-polar fashion. There are many cells
with high acuity and small receptive fields at the center of
the focal location, and there are cells with wide receptive
fields which are sensitive to light far from the attended loca-
tion. The second motivation, computationally, is that recent
experiments exploring visual gist (e.g., [19]) suggest that
object detection may often be a matter of context as much
as appearance. By sampling in such a pattern, the classi-
fier has access to information about the surroundings of the
object, the appearance of the object itself, and the texture
within the object.

There are three major experimental efforts within this
work. First we will explore how the scale of the input im-
age, relative to the size of the target, affects the performance
of an object detector. This experiment will uncover the rel-
ative utility of differing scales. Secondly, multiple scales
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will be included into the same classifier in a simple early-
fusion framework. This experiment will expose whether or
not features from different scales can be combined to build
a more accurate detector than any one scale, i.e., whether
or not the information contained in separate scales is redun-
dant. Finally, more sophisticated features will be discussed,
designed to leverage information across many scales. Adap-
tations to both HMAX and HoG are described and tested.

2. The HoG and HMAX Features

In order to best understand the experiments conducted in
this work, and to get a feel for the motivation underlying the
design of the multi-scale features, it is important to under-
stand the features and models they were extended from. The
Histogram of Oriented Gradients (HoG) algorithm and the
Hierarchal Maximization Architecture (HMAX) algorithm
are both well-known, successful methods for converting an
input image into a mathematical description, or feature vec-
tor [5, 14]. HoG was designed as an adaptation to SIFT [13]
to maximize the detection accuracy on a pedestrian detec-
tion task, while HMAX was designed primarily to mimic
the behavior of the early stages of the mammalian ventral
visual stream. For the purposes of this work, we will only
be using the first layers of HMAX, S1 and C1.

Recently these features, and other features like them,
have been used to accurately detect a wide variety of objects
in natural scenes [6, 17]. Along with SIFT and Shape Con-
text [4], they produce feature vectors which are accumula-
tions of evidences for spatial patterns of oriented structures
within the input.

Both HoG and HMAX can also be described within the
context of Hubel and Wiesel’s simple and complex cell
model of the human visual process, wherein simple cells
(or ”S units”) respond to input patterns at specific positions
and scales within the input, and complex cells accumulate
the results from multiple simple cells, so as to build invari-
ance to irrelevant input transforms [10]. For HMAX, the
first S layer is computed via Gabor wavelet filtration. Com-
plex cells then compute the maximum response over a small
set of S units with similar position and orientation charac-
teristics. It has been shown that this first layer of HMAX
C cell outputs is sufficient for highly accurate detection of
some objects [17].

Similarly, the HoG and SIFT features begin by calculat-
ing a gradient magnitude and direction at each pixel. It is
easy to see that this could correspond to oriented filtration
followed by a winner-takes-all lateral inhibition. The com-
plex layer analog in HoG computes a weighted sum of the
input S units, pooling inputs of similar position and orien-
tation over space. It should be noted that the HoG feature
also includes in its definition a normalization stage, which
post-processes the output bins.

3. Data

In order to test the role of scale in object detection, it
was necessary to find a suitable database of labeled visual
objects within their natural contexts. It was important that
the data included a wide background field around the ob-
jects, in order to explore larger scales. Furthermore, many
labeled examples of each target object were necessary in or-
der to have enough data to train a classifier and still perform
statistically significant tests. Two objects in the LabelMe
database [15] and two more in the StreetScenes database [1]
were found to meet thede constraints. Both of these data-
bases are available online for download1.

Within the LabelMe data-
base, the monitors object from the
’fink-static-indoor-officepanorama-small’
subset and the plates object from the
’static-indoor-database-by-aude-oliva’
subset were chosen. In the StreetScenes database, the
cars and pedestrians objects were selected. These objects
were chosen because of the number of examples, the
resolution of the scenes, and the relative size of the scene
surrounding the object, i.e., small objects with a great
deal of surrounding background were preferred. Fig. 2
illustrates some typical examples of these data and relates
each object to the number of labeled examples, the average
size of those examples, and the total number of images.

For negative examples, it was necessary to chose from
a distribution similar to that of the positive data, to prevent
learning spurious statistics unrelated to the presence of the
object. Locations and images were chosen from the same
marginal distributions as the positive data. Any candidate
negative whose minimum bounding square intersected the
bounding square of a positive example with an intersect to
union ratio greater than .25 was rejected. In this way the
negatives were drawn from the same images as the posi-
tives, and at the same expected locations and scales. Note
that for each positive object class, an independent set of neg-
atives were chosen. Note also that while care was taken not
to include labeled positives in the negative set, unlabeled
examples can sometimes be included due to imperfections
in the ground truth. These represent a very small minor-
ity of the actual negative examples. Some example data is
illustrated in Figure 2.

4. Accuracy as a Function of Scale

In this section an experiment is described in which an
object detector is trained and tested using an existing im-
age feature, but the input image is varied in scale, relative
to the size of the ground truth hand-drawn label. In an ef-
fort to have the broadest possible applicability, this exper-

1http://cbcl.mit.edu/software-datasets/streetscenes and
http://labelme.csail.mit.edu/



Plates Monitors Pedestrians Cars

Plates Monitors Pedestrians Cars
n Labeled Objects 234 395 1449 5799

n Scenes with at least one labeled object 46 195 852 3090
median object size (pixels x× y) [60× 42] [142× 145] [72× 160] [295× 157]
median scene size (pixels x× y) [1200× 900] [4092× 621] [1280× 960] [1280× 960]

Figure 2. Illustration of the object-detection data used from the LabelMe and StreetScenes databases. Top: Two full scenes for each of the
four object types. The target object is annotated with an orange bounding box. Note that the data used for monitor detection comes from
wide panoramas of office scenes. Middle: Four sample extractions for each object, extracted slightly larger than the label and resized to
128× 128 pixels. Bottom: Statistics of the data. It is easy to see that for all four object types there are a significant number of samples and
source scenes, and that the target is generally significantly smaller than the scene as a whole.



iment is repeated for two choices of image feature (HoG
and HMAX), using two different classifiers (gentleBoost
[7], and a linear-kernel SVM), on the four object databases
(Pedestrian, Car, Plate and Monitor), as described in Sec-
tion 3.

Each experimental condition is executed as follows. First
a set of positive and negative images were cropped from
the database. The crop region was selected by first finding
the minimum square bounding box around the object, and
then scaling that box by some scale factor. The scale factors
ranged from a minimum of 1

2
to a maximum of 16 times the

size of the original box. Figure 3 illustrates a the set of
bounding boxes extracted for an example pedestrian. The
small scales are indeed smaller than the target object, and,
depending on the shape of the target, may be completely
within the object. The largest scales leave the target object
as a very small part of the window, most of the window is
background or clutter. The positive and negative crops are
all converted to grayscale and resized to 128 × 128 pixels
using MATLAB’s bilinear imresize function. This size
was chosen to match the experiments of [17, 5] as closely
as possible. The images were then converted into the target
feature format, and a classifier was trained and tested using
5 random training and testing splits. In these experiments
75% of the data was used for training, and the remaining
25% for testing.

Figure 4 illustrates the output of this experiment, as mea-
sured via the average equal-error-rate (EER) of the resulting
ROC curves. Each of the 8 graphs illustrates how the system
accuracy behaves as a function of scale for one of the four
objects, and one of the two image features. The blue cir-
cles indicate systems trained and testing using gentleBoost,
and the red ×s plot the system using linear kernel SVM’s.
It is easy to see that the results from the two classifiers are
not significantly different. For reference, scale index 4 is the
scale factor where the extraction boundaries are equal to the
minimum square bounding box enclosing the ground-truth
polygon.

From these results we see that for each object, and for
both features, there is a preferred scale which reliably pro-
duces the most accurate detections. As the crop region
grows larger or shrinks smaller than this preferred scale,
the performance suffers. Furthermore, we can see that for
all four objects, the preferred scale is larger than the mini-
mum bounding square. It is presumed that this is because
both HoG and HMAX are representing a distribution of im-
age edges (gradients), which are most stable at the object
boundaries. Within the object we can not see those bound-
aries, and too far from the object the boundaries are not
visible due to low resolution. Notice from these results that
the performance of the detector even very close or very far
from the object is significantly above random chance (EER
< .5). This suggests that there is discriminative information

in these measurements, and that perhaps this information is
not available at other scales. A simple strategy of combin-
ing multiple scales into one detector will be explored in the
next section, so as to see if performance can be improved
over the the single optimum scale.

5. Multiple Scales in One Feature

In the previous experiment it was shown experimentally
that object detection can be performed with some level of
accuracy over a very wide range of scales, i.e., there is in-
formation about target presence at fine, near scales within
the object as well as coarse scales with a wide range of
view around the object. Still, it remains unclear whether
this information is redundant across scales, or if it is com-
plementary. In this experiment, information from multiple
scales is included into a single classifier. The goal is to de-
termine whether a multi-scale approach will outperform a
single, optimized scale. The experimental design will be
very simple, it will use the same setup as in the first ex-
periment, but will input features from multiple scales into
the classifier, instead of one scale at a time. Because our
tools are limited to using data with fewer than about 4000
features, a simple feature selection approach will be used.

The experimental design proceeds as follows; first HoG
or HMAX features were calculated from three scales inde-
pendently as in the previous experiment. Scale factors 2, 6,
and 10 were selected, corresponding to scales smaller than
the object, slightly larger than the object, and much larger
than the object (scale-factors 0.63, 1.59 ,and 4). These
scales were chosen since they represent a wide range, but
not so small or or so large as to severely impair perfor-
mance, as can be seen from Fig. 4. For feature selection,
a boosting classifier is trained on each of the three sets of
features independently, noting the features from which the
stumps were derived. Then a single monolithic boosting
classifier is trained on the union of those three selected sets
of features. Figure 5 illustrates the results of this exper-
iment for the four objects tested, again in terms of equal
error rate. In each graph, the results of the 13 single scale
classifiers are plotted. Within the same plot, a horizontal
line indicates the mean EER of the classifier trained with
features from multiple scales (dotted lines indicate the stan-
dard deviation of the 10 trials). The red line shows the clas-
sifier trained with HMAX features and the blue line HoG
features, though they are not statistically different.

For each object tested, the classification score from the
multi-scale approach outperforms the best score from a
classifier trained at any single scale. These results sup-
port the assertion that information from different scales isn’t
necessarily totally redundant, complementary information
from different scales can be leveraged to improve system-
wide performance, even when the underlying image feature
and statistical learning method are unchanged.



Figure 3. An illustration of the set of bounding boxes used to test object detection accuracy as a function of scale. Top Left: A sample scene
and a set of 12 square bounding boxes, calculated as a function of the original bounding polygon of the pedestrian. Bottom: Extractions
from those 12 boxes, scaled to 32 × 32 pixels each. Top Right: A reconstruction of the original scene using the small scaled extractions.
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Figure 4. Detection performance as a function of input scale. Detailed in Sec. 4. Scales are indexed from factor .5 to 16 (too small to
too large). Results are illustrated in the form of ROC Equal Error Rate (EER), averaged over 5 independent trials. These results show that
for the parameters tested, independent of the object, the statistical learning machinery, or the input feature, the scale of the input image
affects the detection rate in a predictable way. If the scale is too small or too large, the classification problem is more difficult.

6. Two Features Designed Natively Multiscale

In the previous section it was demonstrated that a clas-
sifier with access to features from multiple scales can out-
perform the same statistical learning machine with features
from only the best single scale. In this section we outline the
design of two features similar to the HMAX or HoG feature,
but designed with a multi-scale foveated inputs in mind.
While the input to HMAX or HoG is often a 128 × 128
grayscale image, the input used in for these two features is
a set of 8 32× 32 images, centered at the same location, but
with scales ranging over 4 octaves. Compared to a single
128 × 128 input image, this is only half as many samples

(8192), but arranged in a foveated manner as illustrated in
figure 3.

Two features for foveated inputs will be described. The
first simply applies a suitable HoG-like algorithm to each
32×32 image independently, concatenating the values from
each scale. It will be shown that this feature is fast and
accurate, but depends on the input being arranged as a set of
2D images. The second feature is free from that constraint,
but not as accurate. It is an attempt at producing a feature
which is independent of the input image structure, so as to
pool and compare information across several scales. It’s
architecture is inspired by that described by that of HMAX
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Figure 5. Single Scale vs. Multi-Scale Detection. As detailed in Sec. 5, the performance of classifiers with multi-scale input is compared
to the 13 classifiers from the previous experiment (using HoG and boosting). The solid lines indicate the mean EER of the two classifiers
trained with inputs from 3 different scales. The red line shows the multi-scale classifier trained with HMAX features, HoG features are
shown in blue, though there is little difference. The dotted lines illustrate the boundaries of the standard deviation for the multi-scale
classifier trained on HoG.

and the Hubel and Wiesel [10] architecture in general.

6.1. Foveated Histogram of Gradients

The first natively multi-scale feature uses a HoG fea-
ture independently on each scale. Since each image is only
32 × 32 pixels, the parameters were adjusted accordingly.
As in the standard HoG feature, the first step estimates ori-
entation magnitude and direction at each pixel. The sec-
ond step bins these elements into a histogram, where each
bin is 8 pixels across, and magnitudes are split trilinearly
across space and orientation into in general 8 histogram
bins. Blockwise normalization proceeds as in the original
work, where each 2 × 2 spatial block of histogram bins is
normalized to have unit length in L1. Since each block has 4
locations and 9 orientations, there are 36 features per block.
The small images only have 9 blocks each, meaning 324
features per scale. With the 8 scales used here, the Foveated
Histogram of Gradients (FHoG) feature for this input pro-
duces 2592 total features.

The accuracy of the FHoG feature was compared to the
single scale HoG and HMAX C1 feature from Sec. 4 us-
ing the same experimental setup. The results are illustrated
in the box plot of Fig. 7 under condition (C). For each of
thefour objects, the FHoG feature out-performs the best as-
sociated single scale classifier (A) and matches the perfor-
mance of the corresponding 3-scale classifier (B) described
in Sec. 5, even though it receives 1

6
as many brightness sam-

ples from the input.

6.2. Flexible Foveated Architecture

The final feature tested in this work implements a multi-
scale feature considerably different from those described
above. This feature, like those before, fits into the Hubel-
Wiesel model, as described in Sec. 2, but differs in that con-
nectivity and weights are learned, rather than hand designed

or implied via weight sharing. The feature uses a simple
three layer model, with the first layer representing the in-
puts, the second layer represents the filter-like outputs, and
the third layer represents the features to be input to the sta-
tistical learning machine.

Like the HMAX feature, the first stage is a linear func-
tion of the inputs. And like the FHoG feature above, a set
of 8 32× 32 grayscale images shall be the input. However,
rather than defining a filter and repeating it over space, as
in traditional filtration, this feature, during a development
phase, first selects a connectivity from the input to the sec-
ond (S) layer, and then learns appropriate filter values using
independent components analysis (ICA) [11]. ICA is a good
choice to learn this transfer function because of its statistical
properties2 and for biological evidence supporting the exis-
tence of filters which are similar to those learned via ICA
[3].

In a bit more detail, the function to convert the input into
the S values was designed as following. First, a random
set of 128 seed units were selected from the 8, 192 input
units. For each seed unit, the set of the 63 most strongly
correlated input units was determined. 128 sets of 64 inputs
was chosen such that it would be possible (though unlikely),
to cover the input space, leaving no input variable unused.
Each pool of 64 brightness values becomes the input to a
set of S units. In HoG, a small pool of input units feeds into
9 separate orientation tuned units, and in HMAX, pools of
input units feed into 4 orientations, in this feature the same
input units feed into 40 separate S level units, whose con-
nection weights are learned via ICA [2]. It should be noted
that learning patterns within groups of highly correlated in-
puts is not a new idea in the field of image features, it has
been used successfully before, such as in [16].

Figure 6 illustrates the receptive fields learned for 8 S

2ICA produces a rotation of the input space in which the discovered
directions are maximally independent.



units, 4 each from two input sets. These images were cre-
ated by projecting the weights and receptive fields of the
learned S units back into the input space. It is easy to see
that ICA learns wavelet-like features from the multi-scale
inputs. Note that these images are marginalized over scale,
so S features which express differentials over scale are not
visible here.

In order to simulate the complex (C) layer of the feature,
it was necessary to choose a set of C units, and define their
connectivity to the S layer. The strategy chosen was, for
each C unit, begin with a random seed unit from the S layer,
and choose a set units from the S layer with properties simi-
lar to that seed. The properties used to define S unit affinity
were defined as functions of the units’ receptive fields. The
center of the receptive field was determined by calculating
the center of mass of the projected afferent weights. The
size of the receptive field was similarly determined. The
frequency response was determined from the FFT of the re-
ceptive field. The similarity of two S units was calculated
via a simple function of the distances between their centers,
the difference between their sizes, and the difference be-
tween their orientation selectivity. For each C unit, the 16
units with affinity strongest for its seed became its inputs.
The values of the C layer were calculated by simply taking
the maximum for each unit over its afferent S values.

Using the C values calculated in this way, the object de-
tection experiment was repeated for the four object types.
The results of this experiment are summarized in Fig. 7,
under heading (D). The results suggest that while there is
value in this method in terms of its novel architecture and
the potential for tuning it, it is less accurate than simply cal-
culating the HMAX or HoG feature on the image scales in-
dependently. It should be noted that this feature would per-
form identically should the input units be permuted, while
the other features would need some sort of preprocessing to
re-learn the mapping.

7. Summary and Next Steps

The contribution of this work is to clearly demonstrate
the value of a multi-scale approach to object detection. It
was first shown that object detection accuracy is depen-
dant upon scale, for four separate object detection problems.
Two important findings, consistent with the intuitive beliefs
of the community, are that targets can be detected across
a broad range of scales, and that there is a preferred scale
which is slightly larger the size of the object itself.

After demonstrating the effect of scale on detection ac-
curacy, we explored a small set of systems which included
image features from multiple scales. The hypothesis was
that a system privy to information from several scales could
outperform the same system with access to only the most
useful scale. This hypothesis was supported in Sec. 5 by
training a more accurate classifier using features from sev-
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Figure 7. Performance of Multi-scale features. These box and
whisker plots illustrate the object detection performance (in terms
of EER) of the two multi-scale features described in Sec. 6. For
comparison, the best single-scale classifier (A), and the 3 scale
classifier (B) are presented along side the results from the FHoG
feature (C) described in Sec. 6.1 and the results from the flexible
HMAX-like architecture (D) described in Sec. 6.2. It can be seen
that the FHoG feature performs as well as the 3 scale classifier,
even though it has far fewer inputs. Though (D) did not perform
as well as the best single-scale classifier, it does significantly out-
perform a classifier trained directly on the inputs

eral different scales. The hypothesis was bolstered further
in Sec. 6 by using lower resolution images from each scale,
and maintaining high levels of accuracy.

Finally, we presented some preliminary work in the de-
sign of an image feature which natively ingests a multi-
scale input. This extension of the histogram of oriented
energy-like features shows promise in its flexibility to lever-
age multi-scale cues for target detection.

Our next steps are to continue to critically explore the
space of multi-scale image features, so as to design features
which are both discriminative for a wide variety of object
types, and computationally inexpensive. Specifically, we
will explore other methods of learning the connectivity and
weights of the flexible network, beginning by replicating
the success of calculating HMAX on each scale indepen-
dently, and then slowly adapting the weights and connectiv-
ity to improve accuracy. Principles such as slowness [20] in
a video framework, mutual information between units, and
lateral inhibition within a layer will also be explored.



Figure 6. Learned Receptive Fields. Each image illustrates the receptive field learned for one of the S units in the flexible foveated feature.
4 S units from 2 sets are shown here. Learned connectivity and weights are projected back into the image space to produce patterns of
strong excitation for these units.
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