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Abstract. Understanding the processing of information in our cortex is a
significant part of understanding how the brain works and of understand-
ing intelligence itself, arguably one of the greatest problems in science to-
day. In particular, our visual abilities are computationally amazing and
we are still far from imitating them with computers. Thus, visual cor-
tex may well be a good proxy for the rest of the cortex and indeed
for intelligence itself. But despite enormous progress in the physiology
and anatomy of the visual cortex, our understanding of the underlying
computations remains fragmentary. This position paper is based on the
very recent, surprising realization that we may be on the verge of devel-
oping an initial quantitative theory of visual cortex, faithful to known
physiology and able to mimic human performance in difficult recogni-
tion tasks, outperforming current computer vision systems. The proof
of principle was provided by a preliminary model that, spanning several
levels from biophysics to circuitry to the highest system level, describes
information processing in the feedforward pathway of the ventral stream
of primate visual cortex. The thesis of this paper is that – finally – neu-
rally plausible computational models are beginning to provide powerful
new insights into the key problem of how the brain works, and how to
implement learning and intelligence in machines.

I have always believed that theoretical results from information theory, theory of
computation, and learning theory will play an important role in our understand-
ing of how the brain processes information and how intelligent behavior arises
from a large number of neurons. At the same time, I felt that the gap between
computer science and neuroscience was still too large for establishing a direct
connection. Until a few months ago, I always tried to keep separate the projects
in my lab focusing on computer vision, i.e. developing engineered systems for
image recognition, from the projects focused on the functions of visual cortex.

A few months ago, for the first time in my career, my perspective changed
in a dramatic way. The turning point was a surprising discovery: a preliminary
model implementing the theory of visual cortex on which we have been working
for the last five years, in close cooperation with a number of anatomical and
electrophysiological labs, turned out to perform as well or better than the best
engineering systems and as well as humans on difficult recognition tasks involving
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natural, complex images. In my mind this meant that we may be closer to a basic
understanding of how visual cortex recognizes objects and scenes than I ever
thought possible. It also means that the AI community should follow this kind
of developments in neuroscience quite closely. Let me first describe the problem,
its importance, and then the approach that I propose.

Specific problem: The human visual system rapidly and effortlessly recognizes
a large number of diverse objects in cluttered, natural scenes. In particular, it can
easily categorize images or parts of them, for instance faces, and identify a specific
one. Despite the ease with which we see, visual recognition – one of the key issues
addressed in computer vision – has remained quite difficult for computers and
is indeed widely acknowledged to be a very difficult computational problem.
Object recognition in primate cortex is thought to be mediated by the ventral
visual pathway running from primary visual cortex, V1, over extrastriate visual
areas V2 and V4 to inferotemporal cortex, IT. IT in turn is a major source of
input to PFC involved in linking perception to memory and action. Over the last
decade, several physiological studies in non-human primates have established a
core of basic facts about cortical mechanisms of recognition that seem to be
widely accepted and that confirm and refine older data from neuropsychology.
Given the wealth of physiological and behavioral data do we understand how
visual recognition is done? Can we develop a theory leading to computer models
capable of processing images as visual cortex does?

Why developing a theory is both difficult and important: After the
breakthrough recordings in V1 by Hubel and Wiesel there has been a noticeable
dearth of comprehensive theories attempting to explain the function and the
architecture of visual cortex beyond V1. The reason of course is that a com-
prehensive theory is highly constrained by many different data from anatomy
and physiology at different stages of the ventral stream and by the requirement
of matching human performance in complex visual tasks such as object recog-
nition. Thus, developing a consistent, quantitative theory is difficult. However,
it would be extremely useful. Even a partial understanding of visual cortex is
likely to provide powerful insights in how other parts of cortex work. Finally,
theoretical foundations would be of key importance for the AI community be-
cause ultimately we want to understand the information processing involved in
seeing and be able to replicate it in machines.

Preliminary results: One of the first models of visual object recognition,
Fukushima’s Neocognitron (Fukushima, 1980), followed the basic Hubel and
Wiesel hierarchy (Hubel and Wiesel, 1968) in a computer vision system. Building
upon several conceptual proposals (Perrett and Oram, 1993; Wallis and Rolls,
1997; Mel, 1997), we developed (Riesenhuber and Poggio, 1999; Serre et al.,
2002; Giese and Poggio, 2003) a similar computational model. The present the-
ory (Serre et al., 2005) has evolved over the last 6 years from that initial model.
The theory is the outcome of computer simulations, trying to quantitatively ac-
count for a host of recent anatomical and physiological data. It is mainly the
result of collaborations and interactions with several neuroscience experimental
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labs (N. Logothetis in the early years and now D. Ferster, E. Miller, J. DiCarlo,
C. Koch, I. Lampl, W. Freiwald, M. Livingstone, E. Connor). The architecture
of the model resulting from the theory is shown in Fig. 1. It is qualitatively and
quantitatively consistent with (and in some cases actually predicts) several prop-
erties of cells in V1 (Lampl et al., 2004), V2, V4 (Gawne and Martin, 2002) and
IT (Logothetis et al, 1995; Hung et al., 2005) as well as fMRI and psychophysi-
cal data (Riesenhuber et al., 2004). The present theory bridges several levels of
understanding, from computation and psychophysics to system physiology and
anatomy, to the level of specific microcircuits and biophysical properties. The
key extension with respect to the original model by Riesenhuber and Poggio is
an unsupervised learning of the tuning of each unit at the S2, S2b and S3 levels
(possibly corresponding to V4 and PIT, see Fig. 1) on a set of natural images
unrelated to the task. In the present model, units (of the simple type) become
tuned to the neural activity induced by natural images within their receptive
field.

The most interesting, new result is that the model (see Fig. 1) outperforms the
best computer vision systems on several different recognition tasks on real-world
natural images. In fact, this is perhaps the first time that a model of cortex does
as well as humans on a natural image recognition task. Even more surprisingly,
the model mimics human performance when tested for rapid categorization with-
out eye movements. The full theory and the results above are still unpublished
(apart from a technical report titled, “A Theory of Object Recognition: Compu-
tations and Circuits in the Feedforward Path of the Ventral Stream in Primate
Visual Cortex” by Serre, Kouh, Cadieu, Knoblich, Kreiman and Poggio, 2005).

I should emphasize that this is still far from solving the problem of vision.
First, vision is more than object recognition and the visual cortex is more than
the ventral stream. Second, the model in its present form cannot account for
normal, everyday vision which involves eye movements and complex attentional
top-down effects which must be mediated by higher brain centers and the exten-
sive anatomical backprojections found throughout visual cortex. However, this
theory may account for the immediate recognition of single pictures – a task
humans can perform very well.

The open question – beyond establishing the basic aspect of the feedforward
model – is whether it can be extended in the next few years to become a full the-
ory of normal vision. The obvious approach involves physiology, psychophysics,
fMRI and AI. In this project graduate students from computer science would
work along with neuroscience students trying to solve simultaneously the prob-
lem of how visual cortex works and how to build a machine that sees.

In summary, the time may have come for AI to learn from serious neuroscience.
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Fig. 1. The basic architecture of the model of the ventral stream (right). The figure
provides a tentative mapping to the structural primitives of the ventral stream in the
primate visual system (left). The theory assumes that one of the main functions of the
ventral stream is to achieve a trade-off between selectivity and invariance. There are
two basic operations iterated thoughout the hierarchy. Stages of “simple” (S) units with
Gaussian-like tuning (plain circles and arrows), are interleaved with layers of “complex”
(C) units (dotted circles and arrows), which perform a max operation on their inputs
and provide invariance to position and scale. Developmental-like unsupervised learning,
on a set of natural images, determines the tuning of the simple units in the S2 and S3
layers (corresponding to V4 and PIT, respectively). Learning of the synaptic weights
from S4 to the top classification units is the only task-dependent, supervised learning
stage in this architecture. The total number of units in the model is in the order of 27.
Colors indicate the correspondence between model layers and cortical areas. The table
on the right provides a summary of the main properties of the units at the different
levels of the model. The diagram on the left is modified from Van Essen and Ungerleider
(with permission).
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