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ABSTRACT 
  
The regulation of pre-messenger RNA splicing by the spliceosomal machinery via interactions between cis-
regulatory elements and splicing trans-factors to generate a specific mRNA i.e. constitutive splicing, or 
sometimes many distinct mRNA isoforms i.e. alternative splicing, is still a poorly understood process.  
Progress into illuminating this process is further exacerbated by the variation of splicing in the multitude of 
tissues and cell types present, as well as the variation of cis and trans elements in different organisms, and 
the possibility that some alternative splicing events present in expressed sequence tag (EST) databases may 
constitute biochemical ‘noise’ or transient evolutionary fluctuations.  
 
Several studies, mainly computational in nature, addressing different questions regarding constitutive and 
alternative splicing are described here, ranging from improved modeling of splicing signals, studying the 
variation of alternative splicing in various tissues, analyzing evolutionary differences of cis and trans 
elements of splicing in various vertebrates, and utilizing attributes indicative of alternative splicing events 
conserved in human and mouse to identify novel alternatively spliced exons.  
 
In particular: (i) A general approach for improved modeling of short sequence motifs, based on the 
Maximum Entropy principle, that incorporates local adjacent and non-adjacent position dependencies is 
introduced, and applied to understanding splice site signals.  The splice site recognition algorithm, 
MaxENTScan, performs better than previous models that utilize as input similar length sequences; (ii) The 
first large-scale bioinformatics study is conducted that identifies similarities and differences in candidate 
cis-regulatory elements and trans-acting splicing factors in vertebrate genomes, resulting in the 
manipulation of intronic elements that enables fish genes to be spliced properly in mammalian cells; (iii) A 
computational analysis using EST data, genome sequence data, and microarray expression data of tissue-
specific alternative splicing is conducted,  which distinguishes human brain, testis and liver as having 
unusually high levels of AS, highlights differences in the types of AS occurring commonly in different 
tissues, and identifies candidate cis-regulatory elements and trans-factors likely to play important roles in 
tissue-specific AS in human cells; (iv) The identification of a set of discriminatory sequence features and 
their integration into a statistical machine-learning algorithm, ACEScan, which distinguishes exons subject 
to evolutionarily conserved alternative splicing from constitutively spliced or lineage-specifically-spliced 
exons is described; (v) The genome-wide search for and experimental validation of exon-skipping events 
using the combination of two silencing cis-elements, UAGG and GGGG. 
 
Thesis Co-supervisor: Christopher B. Burge 
Title: Associate Professor of Biology 
Thesis Co-supervisor: Tomaso A. Poggio 
Title: Professor of Brain and Cognitive Sciences 
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Chapter 1

Introduction
Computational approaches to addressing questions in molecular biology have in recent

years benefited greatly from the accumulation of copious quantities of messenger RNA

(mRNA) microarray data, sequence transcripts in the form of expressed sequence tags

(EST) and complementary DNA (cDNA) sequences, as well as the rapid sequencing,

assembly and annotation of multiple complete genomes.  The field of splicing has also

become infused by computational methods, which integrate some of the above data, and

addresses relationships between evolution, sequence, tissue specificity, gene expression,

and structure.

This thesis addresses several open questions in splicing, describing: (i) improved

modeling of classical splicing cis-regulatory elements, such as splice sites, and

applications of splice site models to predicting splicing phenotypes that lead to a

particular disease; (ii) the identification of features predictive of constitutive splicing that

differ between fish and mammals, leading to engineered changes that affect cross-species

splicing phenotypes; (iii) the documentation of differences in both presence/absence of

particular cis-elements and expression of trans-factors with regards to alternative splicing

in human tissues; (iv) the  prediction and experimental validation of evolutionarily

conserved alternatively spliced exons using sequence features integrated into a

regularized large-margin classifier; and (v) genome-wide searches for exon-skipping
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events predicted by combinations of UAGG and GGGG motifs.  The techniques

described here encompass a variety of statistical and computational methods, ranging

from large-margin classifiers such as support vector machines, and regularized least-

squares classification, to efficient extraction of enriched sequence motifs from DNA

sequences. In addition, experimental techniques such as reverse-transcriptase polymerase

chain reaction (RT-PCR) and sequencing are used extensively to validate predicted

alternatively spliced exons. In essence, the biological context of the thesis covers

evolutionary consequences of conserved alternative splicing, the relationship between cis

and trans regulators of splicing in particular environments, and has implications for the

function of predicted evolutionarily conserved alternative exons in the brain, in particular

in development and neurogenesis, as well as in genes involved with RNA and nucleic

acid binding.

1.1 Organization

My thesis is mainly a compilation of five large self-contained pieces of work.  As

each study addresses a different aspect of splicing, the detailed background and

motivation for each study is incorporated into the chapter in which the study is described

in detail. Chapter 2 deals with splicing regulatory elements in two parts.  The first part of

chapter 2 consists of improved modeling of the most classical splicing signals i.e. the

splice sites in human, and the applications of the splice site models in predicting the

splicing phenotype of non-classical splicing mutations.  These works have recently been

published [1, 2].  In addition, applications of the improved models of splice sites in

finding enriched elements in pseudo-exons, and in splicing simulation is discussed in
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brief (in press, Wang, Z et al., Cell, 2004).  The second part of chapter 2 consists of

identifying exonic splicing enhancers (ESEs) and intronic splicing enhancers (ISEs) in

various vertebrate genomes, and finding variation in these elements and their

corresponding associated classes of splicing trans-factors in fish versus mammals.  This

work has recently been published [3].  Chapter 3 consists of a rigorous approach to

addressing the differences in alternative splicing patterns, overrepresented exonic motifs,

and expression of trans-factors in multiple human tissues using a combination of

available transcript data and microarray expression data.  A novel metric for quantifying

dissimilarity between alternative isoforms is also described.  This work has recently been

published [4].  Chapter 4 deals with the prediction of functional evolutionarily conserved

alternative exons.  The first part of chapter 4 describes the identification of features

predictive of alternatively spliced exons conserved in human and mouse, and their

integration into a regularized classifier to scan for novel alternative exons in the human

and mouse genomes.  The algorithm, called ACEScan (Alternative-Conserved Exon

Scan) has been applied to multiple vertebrate genomes using large-scale multi-species

alignments.  Experimental validation of predicted candidates demonstrates the high

sensitivity of this method.  This work has been submitted (Yeo et al, 2004).  Part two of

chapter 4 describes collaborative work involving the identification of two motifs, UAGG

in the exonic region, and GGGG in the first 10 bases of introns, that can cause exon-

skipping, and the identification of the trans-factors that are involved.  This work has been

submitted (Han, K et al, 2004).  Chapter 5 gives a brief overview of the current

technologies for large-scale profiling of alternative splicing, and the design and
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implementation of a splicing-specific microarray. Chapter 6 summarizes key findings and

describes the future outlook for this work.

References

1. Yeo G, Burge CB: Maximum entropy modeling of short sequence motifs with
applications to RNA splicing signals. J Comput Biol 2004, 11(2-3):377-394.
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4. Yeo G, Holste D, Kreiman G, Burge CB: Variation in alternative splicing
across human tissues. Genome Biol 2004, 5(10):R74.
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Chapter 2

Modeling and identifying
splicing elements

The majority of protein-coding genes in higher eukaryotes consist of islands of coding

regions i.e. exons, interrupted by oceans of non-coding, poorly conserved sequences i.e,

introns, which are replete with repeat elements and potential regulatory signals.  Pre-

messenger RNA undergoes the post-transcriptional process of splicing, whereby introns

are removed and exons are juxtaposed and ligated together to form messenger RNA

(mRNA), before translation occurs to produce proteins.  Disruption of the splicing

process often leads to nonsense-containing transcripts, which are often degraded by a

process known as nonsense-mediated mRNA decay (NMD). Escapees from this quality

control mechanisms may result in mis-folded and misbehaved proteins, leading to genetic

or acquired diseases.

2.1 Classical Splicing Signals

Understanding the molecular code for splicing requires first modeling the classical

signals, namely the donor or 5' splice site (5'ss) and acceptor or 3' splice site (3'ss), before

incorporating auxiliary elements that modulate splice site choice. Auxiliary cis-regulatory
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elements, typically short sequences on the order of 6-10 bases long, located within exons

and nearby flanking intronic regions serve to recruit trans-factors that enhance or repress

splicing.  For example, exonic splicing enhancers are thought to recruit serine-arginine

rich (SR) proteins that interact with the spliceosome and promote the use of nearby splice

sites.  As such, it is crucial to model the splice signals and to estimate as accurately as

possible the relative strengths of the splice sites as possible, without confounding the

models by integrating signals from deep within the adjacent introns and/or exons.

In Section 2.2, I apply a probabilistic approach that incorporates non-adjacent

dependencies to model splice sites.



2.2 Maximum Entropy Modeling of Short Sequence Motifs

with Applications to RNA Splicing Signals

2.2.1 Abstract

We propose a framework for modeling sequence motifs based on the Max-

imum Entropy principle (MEP). We recommend approximating short se-

quence motif distributions with the Maximum Entropy Distribution (MED)

consistent with low-order marginal constraints estimated from available

data, which may include dependencies between non-adjacent as well as

adjacent positions. Many Maximum Entropy models (MEMs) are spec-

ified by simply changing the set of constraints, and are utilized to dis-

criminate between signals and decoys. Classification performance using

different MEMs gives insight into the relative importance of dependencies

between different positions. We apply our framework to large datasets of

RNA splicing signals. Our best models outperform previous probabilistic

models in the discrimination of human 5’ (donor) and 3’ (acceptor) splice

sites from decoys. Finally, we discuss mechanistically-motivated ways of

comparing models.

2.2.2 Introduction

Given a set of aligned sequences representing instances of a particular sequence motif,

what model should be used to distinguish additional motif occurrences from similar

sequences? This problem occurs commonly in computational biology with examples

of DNA, RNA and protein sequence motifs. For example, it is important identify sig-

nal peptides in protein sequences and to to recognize true sites of RNA splicing from

’decoy’ splice sites in primary transcript sequences. A number of statistical models

have been developed to approximate distributions over sets of aligned sequences. For

example, Markov Models (MMs) and Hidden Markov Models (HMMs) are commonly

used in bioinformatics[12], with applications in gene-finding and protein domain mod-
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eling [18].

We propose that the most unbiased approximation for modeling short sequence motifs

is the Maximum Entropy Distribution (MED) consistent with a set of constraints esti-

mated from available data. This approach has the attractive property that it assumes

nothing more about the distribution than that it is consistent with features of the

empirical distribution which can be reliably estimated from known signal sequences.

In this paper we consider low-order marginal distributions as constraints, but other

types of constraints can also be accomodated. Such models have been exploited in

natural language processing [3], amino acid sequence analysis [5] and as a weighting

scheme for database searches with profiles [19].

We introduce our approach, define “constraints” and Maximum Entropy models

(MEM), and describe the use of Brown’s iterative scaling [4] procedure of iterative

scaling to obtain the MED consistent with a given set of constraints in Section 2.2.3.

We also describe the use of Brown’s iterative scaling [4] procedure of iterative scaling

to obtain the MED consistent with a given set of constraints. In addition, we in-

troduce a greedy-search information maximization strategy to rank constraints. This

approach is applied to splice site recognition[7], an important problem in genetics and

biochemistry, for which an abundance of high quality data are available. We focus

on effectively modeling the 9 base sequence motif at the 5’ splice site (5’ss), and the

∼23 base sequence motif at the 3’ splice site (3’ss) of human introns, and not on the

general problem of gene prediction. However, better modeling of the splice signals

should lead to improved gene prediction and can be used to predict the splicing phe-

notypes of mutations that alter or create splice sites. The constraints for a MEM can

also be ranked in importance. Finally, we propose a straightforward mechanistically-

motivated way of comparing splice site models in terms of local optimality.

2.2.3 Methods

Maximum Entropy Method Let X be a sequence of λ random variables X =

{X1, X2, ..., Xλ} which take values from the alphabet {A, C, G, T}. Let lower-case
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x = {x1, x2, ...xλ} represent a specific DNA sequence. Let p(X) be the joint probabil-

ity distribution p(X1 = x1, X2 = x2, ..., Xλ = xλ), and upper case P (X = x) denote

the probability of a state in this distribution (i.e. there are 4λ possible states).

The principle of maximum entropy was first proposed by Jaynes [16] and states that

of all the possible distributions in the hypothesis space that satisfy a set of constraints

(component distributions, expected values or bounds on these values), the distribu-

tion that is the best approximation of the true distribution given what is known (and

assuming nothing more) is the one with the largest Shannon entropy, H, given by the

expression

H(p̂) = −
∑

p̂(x)log2(p̂(x)) (1)

where the sum is taken over all possible sequences, x. We will use logarithms to

base 2, so that the entropy is measured in bits. Shannon entropy is a measure of

the average uncertainty in the random variable X, i.e. the average number of bits

needed to describe the outcome of the random variable. The set of constraints should

therefore be chosen carefully and must represent statistics about the distribution

that can be reliably estimated. It is possible to specify a set of constraints which

are “inconsistent” in that they cannot be simultaneously satisfied (e.g. {P (A, A) =

3/4, P (T, T ) = 1/2}). However, all constraint sets used here will be subsets of the

marginal frequencies of the “empirical distribution” on sequences of length λ, and will

therefore be consistent. The uniqueness of the MED for a consistent set of constraints

was proved by Ireland and Kullback [15].

The principle of minimum cross-entropy or minimum relative entropy (MRE), first

introduced by Kullback, is a generalization of the MEP that applies in cases when

a background distribution q is known in addition to the set of constraints. Of the

distributions that satisfy the constraints, the MRE distribution is the one with the

lowest relative entropy (or KL-divergence), D, relative to this background distribution:

DKL(p̂) =
∑

p̂(x)log
p̂(x)

q(x)
(2)
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Minimizing DKL(p̂) is equivalent to maximizing H(p̂) when the prior q is a uniform

distribution on the sequences of length λ. Shore and Johnson (1980) proved that

maximizing any function but entropy will lead to inconsistencies unless that function

and entropy have identical maxima [26]. This implies that if we believe that the

constraints are correct and well estimated (and no other information is assumed),

then the MED is the best approximation of the true distribution.

Marginal Constraints For convenience, we consider two categories of constraints:

“complete” constraints, which specify sets of position dependencies and “specific”

constraints, which are constraints on (oligo-)nucleotide frequencies at a subset of

positions.

“Complete” Constraints

Omitting the hats over the variables for convenience, let SX be the set of all lower-

order marginal distributions of the full distribution, p(X = {X1, X2, ..., Xλ}). A

lower-order marginal distribution is a joint distribution over a proper subset of X.

For example, for λ = 3,

SX = {p(X1), p(X2), p(X3), p(X1, X2), p(X2, X3), p(X1, X3)} (3)

Define Sm
s ⊆ SX , where superscript m refers to the marginal-order of the marginal

distributions and the subscript s refers to the skips of the marginal distribution. In

Equation 3, the first three elements are 1st-order marginals (i.e. m = 1), and the last

three elements are 2nd-order marginals (i.e. m = 2): p(X1, X2) and p(X2, X3) are

the 2nd-order marginals with skip 0 (s = 0), and p(X1, X3) is the 2nd-order marginal

with skip 1 (s = 1). They are illustrated in our notation below:

S1

0 = {p(X1), p(X2), p(X3)}

S2

0 = {S1

0 , p(X1, X2), p(X2, X3)}

S2

1 = {S1

0 , p(X1, X3)}

SX = S2

0,1 = {S1

0 , p(X1, X2)p(X2, X3), p(X1, X3)}
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For convenience, we include S1
0 in Sm

s whenever the marginal order, m > 1. For

an aligned set of sequences of length λ, the 1st-order constraints (S1
0) are the em-

pirical frequencies of each nucleotide (A,C,G,T) at each position, and the Maximum

Entropy Distribution consistent with these constraints is the Weight Matrix Model

(WMM), i.e. all positions independent of each other [7]. On the other hand, if 2nd-

order nearest-neighbor constraints (i.e. S2
0) are used, the solution is a Inhomogeneous

1st-order Markov model (I1MM) (Appendix A). Consequently, different sets of con-

straints specify many different models. The performance of a model tells us about

the importance of the set of constraints that was used.

“Specific” Constraints

“Specific” constraints are observed frequency values for a particular member of a set

of “complete” constraints. Continuing with the example above, the list of 16 “specific”

constraints for p(X1, X3) are: {A · A, A · C, A · G, A · T, ..., T · A, T · C, T · G, T · T},

where A ·A is the observed frequency of occurrence of the pattern ANA (N = A, C, G

or T ).

Maximum Entropy Models A Maximum Entropy Model (MEM) is specified

with a set of complete constraints, and consists of two distributions, namely, the

signal model (p+(X)) and the decoy probability distribution (p−(X)), both of which

are the MEDs generated by iterative-scaling (Section 2.2.3) over constraints from a

set of aligned signals and a set of aligned decoys of the same sequence length, λ,

respectively. Given a new sequence, the MEM can be used to distinguish true signals

from decoys based on the likelihood ratio, L,

L(X = x) =
P+(X = x)

P−(X = x)
(4)

where P +(X = x) and P−(X = x) are the probability of occurrence of sequence

x from the distributions of signals(+) and decoys(-), respectively. Following the

Neyman-Pearson lemma, sequences for which L(X = x) ≥ C, where C is a threshold

that achieves the desired true-positive rate α, are predicted to be true signals.
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Iterative Scaling to Calculate MED In simple cases, the MED consistent with

a set of constraints can be determined analytically using the method of Lagrange

multipliers, but analytical solutions are not practical in most real world examples.

Instead, the technique of iterative scaling is used. This technique was introduced by

Lewis [21] and Brown [4], who showed that the procedure described below converges

to the MED consistent with the given lower order marginal distributions. There is no

limitation on the number or type of component distributions that can be employed

[4]. Brown showed that at each step of the iteration, the approximation to the

MED improves, using Equation( 2) as a measure of closeness of the approximating

distribution to the true distribution, but the proof of convergence is not rigorous (see

[15] for a rigorous proof of convergence).

The iteration procedure begins with a uniform distribution with terms P 0(X) =

4−λ, so all sequences of length λ are equally likely. Next, we specify a set of complete

constraints and a corresponding list of specific constraints. Represent each member of

the ordered list of specific constraints as Qi, where i is the order in the list. The next

step is to sequentially impose the specific constraints, Qi, that the approximating

distribution must satisfy. The terms relevant to the constraint at the j th step of

iteration have the form:

P j = P j−1
Qi

Q̂j−1

i

(5)

where P j−1 is a term at the (j−1)th step in the iteration while P j is the corresponding

term at the jth step, Qi is the ith constraint in the list of “specific constraints” and

Q̂j−1

i is the value of the marginal corresponding to the ith constraint determined

from the distribution p at the j − 1th step. To illustrate, we return to our example

in Equation 3 and apply constraint Qi = A · A at the jth step:

P j(X = ANA) = P j−1(X = ANA)
Qi

Q̂j−1

i

(6)

where

Q̂j−1

i =
∑

N∈{A,C,G,T}

P j−1(X = ANA) (7)
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All terms not included in this sum (i.e. triplets not matching ANA) are iterated as

follows:

P j(X = V NW ) = P j−1(X = V NW )
1 − Qi

1 − Q̂j−1

i

(8)

for V NW such that V 6= A or W 6= A, N ∈ {A, C, G, T}.

Note that enforcing satisfaction of a constraint at step j may cause a previous con-

straint to be unsatisfied until the previous constraint is applied again. This process

is iterated until convergence or until a sufficiently accurate approximation is obtained.

Ranking Position Dependencies As the iterations proceed, the entropy, H (Equa-

tion 1) of successive distributions p(X) decreases from the maximum value log2(4
λ)

to that of the MED. This makes intuitive sense- as more constraints are applied, the

distribution contains more information, hence lower entropy. For our purposes, we say

the entropy has converged when the difference in entropy between iterations becomes

very small (e.g. | ∆H |≤ 10−7). A KL-divergence criterion gives similar results. We

have found that convergence typically requires about 10-20 complete iterations of the

constraints for a cutoff of | ∆H |≤ 10−7.

Applying different constraints reduces the entropy of the distribution by different

amounts. Therefore, we can control the rate of convergence by changing the order in

which the constraints are applied. We perform a greedy search to rank constraints

by the amount that they reduce the entropy of the solution as described below.

Greedy-search Entropy-reduction Strategy

A first list (“bag of constraints”) is initialized to contain all specific constraints. A

second list, the “ranked list”, is initially empty. At each iteration:

1. Initialize a uniform distribution.

2. Determine the MED consistent with all constraints from the “ranked list”.
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3. Apply the first constraint from the “bag of constraints”. Determine the reduc-

tion in H relative to the distribution determined in step 2, ∆Hi. Repeat all the

constraints separately, recording ∆Hi for each constraint.

4. Place the constraint with the largest ∆Hi in the “ranked list”.

5. Repeat steps 1 to 4 until all constraints in the “bag of constraints” have been

placed in the “ranked list”.

It is important to emphasize that the ranking of a constraint depends on the con-

straints ranked before, so that this algorithm is not guaranteed to determine the

optimal subset of k constraints for 2 ≤ k ≤ N − 1, where N is the total number of

constraints. Another possible criterion for ranking (instead of ∆Hi) is ∆KLi defined

as the reduction in relative entropy (Equation 2). Constraints can also be ranked in

larger groups, instead of one at a time, thus speeding up the process.

2.2.4 Splice Site Recognition

The success of gene finding algorithms such as Genscan [8], HMMgene [17] and Genie

[20] is critically dependent on finding the signals that mark exon-intron boundaries,

which are recognized in cells by the nuclear pre-mRNA splicing machinery. The two

strongest contributing signals are the donor or 5’ splice site (5’ss) and the acceptor

or 3’ splice site (3’ss), which demarcate the beginning and end of each intron, respec-

tively.

In [28], a number of algorithms that predict human splice sites were compared, in-

dicating, as might be expected, that algorithms which use global and/or local cod-

ing information and splice signals (HMMgene and NetGene2) perform better than

algorithms that only use the splice signals themselves (NNSPLICE, SpliceView and

GeneID-3). Here, we focus on modeling the discrete splicing signals of specific length,

with the understanding that once these have been optimally modeled, they could be

incorporated into more complex exon or gene models if desired.

A number of models have been developed that can be estimated from reasonably
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sized sets of sequences[7]. Weight Matrix models (WMMs) assume independence

between positions. Although this assumption is frequently violated in molecular se-

quence motifs [6], WMMs are widely used because of their simplicity and the small

number of sequences required for parameter estimation (SpliceView and GeneID-3

score splice sites based on Weight Matrix models [25]). Inhomogeneous first-order

Markov models (I1MMs) account for nearest-neighbor dependencies which are often

present in sequences and usually can discriminate sites more accurately than WMMs.

However, I1MMs ignore dependencies between non-adjacent positions, which may

also be present. Higher-order Markov models account for more distant neighboring

dependencies, but the number of parameters that have to be estimated and hence the

required number of training samples increases exponentially with Markov order.

Decision tree approaches, such as the Maximal Dependence Decomposition (MDD)

[7] used in Genscan and GeneSplicer [24] reduce the parameter estimation problem by

partitioning the space of signals such that each leaf of the tree contains a sufficiently-

sized subset of the sites and the strongest dependencies between positions are modeled

at the earliest branching points when the most data are available. Cai and colleagues

applied probabilistic tree networks and found that simple first-order Markov models

are surprisingly effective for modeling splice sites[10]. Arita and colleagues utilize

the Bahadur expansion to approximate training of Boltzmann machines to model all

pair-wise correlations in splice sites and found no improvement compared to first-

order Markov models for 5’ss, but better performance for the 3’ss [1]. Our work is

related to the latter two approaches in that we introduce a general family of models

in which Markov models appear as natural members. It is worth noting that in ad-

dition to (non-)adjacent pairwise dependencies, MEMs can accommodate third-order

or higher-order dependencies.

Construction of Transcript Data To avoid using computationally predicted

genes, available human cDNAs were systematically aligned to their respective ge-

nomic loci by using a gene annotation script called GENOA (L.P. Lim and C.B.B.

unpublished). To simplify the analysis, genes identified by this script as alternatively
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spliced were excluded. We used a total of 1821 non-redundant transcripts that could

be unambiguously aligned across the entire coding region, spanning a total of 12,715

introns (hence 12,715 5’ss and 12,715 3’ss). Our training and test data sets comprise

disjoint subsets of these data. We use sequences at positions {-3 to +6} of the 5’ss

(i.e. last 3 bases of the exon and the first 6 bases of succeeding intron), which have

the GT consensus at positions {+1,+2}, and the sequences at positions {-20 to +3}

of the 3’ss with the AG consensus at positions {-2,-1} (see Table 1). These splice sites

are recognized by the major class or U2-type spliceosome that is universal in eukary-

otes. We excluded 5’ss that have the GC consensus and 5’ss or 3’ss that matched the

consensus patterns for splicing by the minor class or U12-type spliceosome. Decoy

splice sites are sequences in the exons and introns of these genes that match a min-

imal consensus but are not true splice sites e.g. decoy 5’ splices sites are non-splice

sites matching the pattern N3GTN4 and decoy 3’ss are non-splice sites that match

the pattern N18AGN3 [9].

2.2.5 Results and Discussion

Models of the 5’ splice site The various models tested are listed in Table 2.

The text abbreviations are in the first column, where ”me” stands for maximum en-

tropy, ”s” stands for skip and ”x” stands for the maximum skip; the first number is the

marginal order and the second is the skip number or maximum skip number. Figure 1

and Table 2 together illustrate the improvement in performance resulting from use of

more complex constraints. From the ROC analysis ( Figure 1 and Appendix A.0.11),

it is clear that me2s0 (equivalent to a I1MM), does much better than the me1s0

(equivalent to a WMM), as has been observed previously [7], indicating that nearest-

neighbor contributions are important in human 5’ss. Our best model according to

ROC analysis and maximum correlation coefficient analysis (Appendix A.0.10) for

the 5’ site is the me2x5 model, which takes into account all pair-wise dependencies.

The MDD model used in Genscan [8] performs slightly better than the me2s0/I1MM

model. Analysis using maximum ’approximate correlation’ (see Appendix A.0.10)
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rather than maximum correlation coefficient gave similar results.

We observe that the me2x5 model shows significant improvement over the me1s0/WMM

model: the false positive rate at 90% sensitivity was reduced by approximately a fac-

tor of 2. The correlation coefficients are not large, which likely reflects properties of

the human pre-mRNA splicing mechanism, in which 5’ss recognition relies heavily on

other signals, such as enhancers and silencers, distinct from the splice signal itself [14]

[2].

Ranked Constraints

The top 20 2nd-order constraints determined for models me2s0 and me2x5 using

the greedy-search algorithm are listed in Tables 3 and 4. Figure 2A illustrates the

faster increase in information content of the model when the constraints were applied

in ranked order (Table 3), versus a random ordering of constraints. Furthermore,

higher performance is achieved with ranked constraints versus a similar number of

randomly ordered constraints (Figure 2B). Of course, when all the constraints are

used, there is no difference in performance. Clearly, certain pairs of positions contain

more information useful for discrimination. Also, the information content of the

distribution is related to the performance of the model, i.e. the performance increases

with increasing information content of the model. It is useful that the rankings

of the dependencies are not just on the level of positions, but also at the level of

(oligo)nucleotide sequence, a feature not seen in [10]. Some of these effects could

reflect preferences of trans-acting factors which may bind cooperatively to different

5’ss positions.

Models of the 3’ splice site The 3’ss sequence motifs is much longer than the

5’ss, ∼23 bases. For notational simplicity, we define the index of each position in the

sequence starting from 1 to 21, excluding the invariant AG dinucleotide. To avoid

the impractical task of storing and iterating over 421 ≈ 4 × 1012 possible sequences,

we may first break up the sequences into 3 consecutive non-overlapping fragments of

length 7 each (fragments 1 to 3: positions 1 to 7, 8 to 14 and 15 to 21 respectively),

build individual MEDs for the 3 fragment subsets (see Equation 9), and score new
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sequences by a product of their likelihood ratios (Equation 4).

P ′(X) = P (X1, ..., X7)P (X8, ..., X14)P (X15, ..., X21) (9)

However, using Equation 9 ignores dependencies between segments. The result-

ing loss in performance is illustrated in Figure 3 (compare me2s0 and mm1 curves).

Again, the me1s0 is equivalent to a WMM. To retain the dependencies of the nu-

cleotides between the segments while avoiding computer memory issues, we propose

the following approach. Six other fragments are modeled (fragments 4 and 5: posi-

tions 5 to 11 and 12 to 18 respectively; fragments 6 to 9: positions 5 to 7, 8 to 11, 12

to 14, 15 to 18 respectively). We then multiply the likelihood ratios for fragments 1

to 5 and divided by the likelihood ratios of fragments 6 to 9. For dependencies within

7 bases, this approach “covers” all the positions.

Poverlap(X) =
P ′(X)P ′′(X)

P (X5, ..., X11)P (X12, ..., X18)
(10)

where

P ′′(X) = P (X5, X6, X7)P (X8, X9, X10, X11)P (X12, X13, X14)P (X15, X16, X17, X18)

The performance of this “overlapping” Maximum Entropy model is illustrated

in Figure 3 (labeled modified me2s0), and performs similarly to the corresponding

Markov model. Models me3s0 and me4s0 were modified analogously. Previous re-

searchers have found that nearest-neighbor dependencies were sufficient to specify

good models for 3’ss sites ([7],[10]). In fact, we found that a 2nd-order Markov model

of the 3’ss site performs better than a 1st-order Markov model, but that a 3rd-order

model performs worse than a 1st-order Markov model, presumably because of pa-

rameter estimation and/or sample size issues for 3rd-order transition probabilities of

the form P (L|IKJ) where I, J and/or K are purines (low frequency in most 3’ss

positions). This observation motivates our procedure for segmenting the signal into 9

fragments, which use only 2nd-order constraints and neglects some long-range depen-

dencies (such as between positions 1 and 21). It is possible to segment the signal in a
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way that captures such long-range dependencies (not shown). However we found that

adding dependencies beyond 2-nucleotide separations does not significantly change

the performance (Table 5 and Figure 4).

Clustering Splice Site Sequences The MDD model [7] [8] demonstrated that

appropriate subdivision of the data can lead to improved discrimination. Here, we

ask whether MEMs can be improved by first clustering the data into subsets. First, we

generated a symmetric dissimilarity matrix D, where dij is the number of mismatches

between splice site sequences i and j in the list of training set sequences. Next, we

implemented hierarchical clustering on D using Ward’s method. Results for our set

of 5’ss are shown in Figure 5 and Figure 6.

Interestingly, we observe that the highest contributors to the information content

(excluding the GT consensus) in cluster 1 come from the 3rd, 4th, 5th and 6th

bases in the intron, whereas the last two bases in the exon contribute the most in

cluster 2, indicating that clusters 1 and 2 represent “right-handed” and “left-handed”

versions of the 5’ss motif respectively. These two classes of 5’ss might be recognized by

different sets of trans-factors e.g. U6 snRNP would generally interact more strongly

with “right-handed” 5’ss, while U5 snRNP should interact preferentially with “left-

handed” 5’ss [9]. We can combine separately trained models in the following manner:

Pcombined(X) = P (X|M1)P (M1) + P (X|M2)P (M2) (11)

where Pcombined(X) is the probability of generating sequence X under the combined

model, P (X|M1) and P (X|M2) are the conditional probabilities of generating X

given the model constructed using cluster 1 and cluster 2 sequences, respectively,

and P (M1) and P (M2) are the prior probabilities of cluster 1 and 2, respectively.

The performance of combined 5’ss models are illustrated in Figure 7. Separating

the sequences into the 2 clusters and modeling them separately with WMMs and

then combining the models performs significantly better than using a WMM derived

from all the sequences. However, modeling the separate clusters with me2x5 and

I1MM models does not show significant improvements compared to modeling the
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entire cluster. Apparently, the more complicated models are able to capture cluster-

specific information using the entire set of sequences. Figure 8 shows the motifs

for 3’ss clusters which appear to separate into T-rich versus C/T-rich pyrimidine

tracts. Combined 3’ss models showed a similar effect as with the 5’ss models (data

not shown).

2.2.6 Applications of Splice Site Models

The specificity of pre-mRNA splicing hinges on highly conserved base pairing between

the 5’ splice site (5’ss) and U1/U6 small nuclear RNAs as well as interactions with

U1C protein [11] and U5 snRNA [23]. It is unclear whether decoy splice sites are

recognized by the splicing machinery. A study showing that intronic 5’ decoy sites

are activated when cells are heat shocked demonstrates that intronic decoys may be

functional under special conditions [22]. Therefore, decoys could potentially be real

splice sites, but may be blocked by the presence of RNA secondary structures [29],

or have suboptimal location relative to splicing enhancers and repressors [14] [13].

Nevertheless, a good computational model should generally assign higher scores (i.e.

log-likelihood ratios) to real 5’ss and lower scores to decoys, when all other factors

are equal.

Proximal 5’ss decoys in introns We have used several measures to compare the

performance of different models, all of which involve comparing the sensitivity of the

models for a given false positive rate (Appendices A.0.10 and A.0.11). This essen-

tially sets a global threshold, C (see Section 2.2.3) in deciding whether a sequence is

or is not a true splice site. However, the splice site recognition machinery does not

appear to use a global setting- in some cases weak splice sites are used when posi-

tioned in close proximity to splicing enhancers. This suggests a local decision rule for

splice site detection, i.e. the most important factor may be whether the true splice

site has higher score than decoys in its proximity.

We compared models by scoring possible 5’ss in a dataset of ∼ 12, 600 human introns.

Better models should result in a larger number of introns with no higher-scoring de-
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coys downstream of the real 5’ss. Figure 9 shows that our best 5’ss model, me2x5,

results in the greatest number of introns which have no higher-scoring decoys down-

stream of the real 5’ss, i.e. 69 introns more than the MDD model, and 639 more than

the WMM. Moreover, the me2x5 model gives the lowest number of introns that have a

first higher-scoring decoy (fhsd) in the intron within 250 bases from the upstream real

5’ss - me2x5 predicted 75 fewer such introns than MDD, and 686 fewer introns than

the WMM. The three models result in approximately the same number of introns

where the fhsd occurred further than 250 bases from the real 5’ss. On inspection of

the length distribution of these introns, we observed that the median length for these

introns were ∼ 2, 770 − 2, 900 bases, whereas the rest of the introns had a median

length of ∼ 650 − 750 bases, suggesting that global optimality of splice site motifs is

less important in long introns.

Ranking and Competing 5’ss The top 20 highest-scoring 5’ss sequences ranked

by the me2x5 model are listed in Table 6, with their corresponding ranks by the

MDD, 1IMM and WMM models and, in the last column, the “odds ratio” defined as

the frequency of occurrence of the sequence as a splice site divided by its occurrence

as a decoy. Different models result in significatly different rankings of the signals.

Figure 10 shows that the top scoring sequences are well correlated between models,

but the lower scoring sequences vary much more.

Predicing Splicing Mutations in the ATM gene Ataxia-telangiectasia (A-T)

is an autosomal recessive neurological disorder caused by mutations in the ATM gene.

Recently, our Maximum Entropy 5’ss and 3’ss models have been utilized to predict

the consequences of genomic mutations in the ATM gene that perturb splicing with

promising results [30].

2.2.7 Conclusions

We recommend using the Maximum Entropy Distribution as the least biased ap-

proximation for the distribution of short sequence motifs consistent with reliably
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estimated constraints. We show that this approach grants us the flexibility of gen-

erating many different models simply by utilizing different sets of constraints. Our

greedy-search strategy ranks constraints at the resolution of paired nucleotides at

specific positions. This can be useful for determining correlations with binding fac-

tors. We demonstrate on a simple example that using the constraints in order of

their ranking increases the rate of convergence to the MED, increases the informa-

tion content of the distribution and improves performance much faster than using

randomly ordered constraints. The ranking of these constraints may reflect biological

dependencies between nucleotides at different positions in the motif. Our best mod-

els using simply dinucleotide marginal distributions outperform previous models, e.g.

WMMs and IMMs. These models themselves are MEDs when position-specific fre-

quencies or nearest-neighbor dinucleotide frequencies are used as constraints. MEMs

are relatively easy to use, e.g. the 5’ss model is stored as a 16,384-long vector in lex-

icographic order. We have developed a 3’ss “overlapping” Maximum Entropy model

using an approach which combines multiple sub-models that performs better than

models utilizing only nearest-neighbor dependencies. We show that the MED takes

into account possible sub-clustering information in the data. We use a straightforward

biologically-motivated way to compare models in terms of local optimality. Impor-

tantly, the MED framework described can be applied to other problems in molecular

biology where large datasets are available, including classification and prediction of

DNA, RNA and protein sequence motifs.
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2.2.9 Appendix

A Inhomogeneous Markov Models

A kth-order Inhomogeneous Markov Model can be generated as follows:

pkMM(X) = p(X1, ..., Xk)
λ∏

i=k+1

p(Xi|Xi−1, ..., Xi−k). (12)

where X = {X1, X2, ...Xλ}, k is the order and p(Xi|Xi−1, ..., Xi−k) is the conditional prob-

ability of generating a nucleotide at position i given the previous k nucleotides. As before,

conditional probabilities and marginals are estimated from the corresponding frequencies of

occurrences of nucleotide combinations at the specified positions.

It is important to note that the maximum entropy distributions using nearest-neighbor

constraints of marginal-order (k + 1) are equivalent to kth-order Markov Models. In every

case, the performance of the MED for constraints Sk
0 was equivalent to that of a (k − 1)th

order Markov model. Thus the class of Markov models is a subset of the class of solutions

specified by MEM.

A.0.10 Performance Measures

Table 7 illustrates a confusion matrix, which contains information about how well a model

performs given an independent test set with real splice sites (positives) and decoys (nega-

tives). N is the total number of test sequences, i.e. N = TP + FP + FN + TN . Standard

Measures of accuracy such as Correlation Coefficient (CC), Approximate Correlation (AC),

Sensitivity (Sn) and False Positive Rate (FPR) are defined below:

CC =
(TP × TN) − (FN × FP )

(TP + FN)(TN + FP )(TP + FP )(TN + FN))
1

2

AC =
1

2
(

TP

TP + FN
+

TP

TP + FP
+

TN

TN + FP
+

TN

TN + FN
) − 1

Sn =
TP

TP + FN

FPR =
FP

TN + FP
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A.0.11 ROC analysis

Receiver Operating Curve (ROC) Analysis [27] is an effective way of assessing the per-

formance of models when used in a binary hypothesis test. In our case, a sequence x is

predicted as a splice site if the likelihood ratio, L, is greater than a threshold, C (Equa-

tion 4). A ROC curve is a graphical representation of Sn (on the y-axis) versus false positive

rate (FPR) (on the x-axis) as a function of C, and has the following useful properties:

1. It shows the tradeoff between sensitivity and false positive rate (increases in sensitivity

are generally accompanied by an increase in false positives).

2. The closer the curve follows the left-hand border and then the top border of the ROC

plot, the more accurate the model. The area under the curve is a measure of test

accuracy.

3. The closer the curve comes to the 45-degree diagonal of the ROC space, the less

accurate the model.

Analogous to the ROC analysis, we can plot the other standard measures as described

above against changing values of the threshold, C. The maximum point on the curves

will indicate the best setting for C and gives a performance measure which can be used to

compare models. Hence we can define CCmax to be the maximum correlation coefficient

i.e. the highest point on the curve, and CCCmax
is the threshold where CCmax is obtained.

ACmax and CACmax
can be defined similarly.
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Figure 1: 5’ss: ROC curves for me2x5, me2s0, me2s1, me1s0 and MDD. The curves

for the other models are not plotted, but can be inferred from Table 2.
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If the constraints are ranked, the information content increases at a higher rate than

if randomly ranked constraints are used. The x-axis corresponds to the model us-

ing the top N constraints. (B): Maximum Correlation Coefficient as a function of

constraints. Ranked constraints added sequentially led to better performance with

fewer constraints, compared to a random ordering of constraints. The model is me2s0

(excluding 1st order marginals).
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Figure 5: Truncated Dendrogram for 5’ss sequences (hierarchical clustering using

ward’s method). The two major clusters contain 7,260 and 5,367 sequences, respec-

tively.
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Figure 6: Sequence motifs for 5’ss cluster 1 (left) and 2 (right) created with the Pic-

togram program: http://genes.mit.edu/pictogram.html. The height of each letter is

proportional to the frequency of the corresponding base at the given position, and

bases are listed in descending order of frequency from top to bottom. The infor-

mation content (relative entropy) for each position relative to a uniform background

distribution is also shown.
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Figure 7: 5’ss: ROC curves for me2x5, 1IMM, WMM and me2x5 (combined), 1IMM

(combined) and WMM (combined).
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Figure 8: Sequence motifs for 3’ss cluster 1 (top) and 2 (bottom)
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(hsd) than the real upstream 5’ss, and the number of introns that have a first higher

scoring decoy (Fhsd) within 250 bases from the real 5’ss or greater than 250 bases

from the real 5’ss.
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Model names are labeled in the x and y-axes.
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Real 5’ss Decoy 5’ss Real 3’ss Decoy 3’ss

Train 8,415 179,438 8,465 180,957

Test 4,208 89,717 4,233 90,494

Total 12,623 269,155 12,698 271,451

Table 1: Number of sequences in 5’ss and 3’ss training and test sets.
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Models Constraints CC

me2x5 S2
1,2,3,4,5 0.6589

me2x4 S2
1,2,3,4 0.6552

me2x3 S2
1,2,3 0.6533

me5s0 S5
0 0.6527

me2x2 S2
1,2 0.6399

me4s0 S4
0 0.6390

mdd - 0.6493

me2s0 S2
0 0.6425

me3s0 S3
0 0.6422

me2s1 S2
1 0.5971

me2s2 S2
2 0.6010

me2s4 S2
4 0.5861

me2s3 S2
3 0.6031

me2s5 S2
5 0.5924

me1s0 S1
0 0.5911

Table 2: 5’ss Models ranked by ROC analysis(top to bottom), and the corresponding

maximum Correlation Coefficients (CC).
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Rank ∆Hi ∆KLi

1 .AGgt.... .AGgt....

2 ...gt.AG. ...gt.AG.

3 TA.gt.... TA.gt....

4 ...gtTA.. ...gtTA..

5 ...gt..GT ...gt..GT

6 ...gtGT.. ...gtGT..

7 ...gt.CG. ...gt.CG.

8 ..TgtT... ..GgtG...

9 ...gt.GG. ..AgtC...

10 ...gtGG.. ...gtCG..

11 ...gtCG.. ...gt..AC

12 .TAgt.... ...gtCC..

13 ..AgtC... ..CgtT...

14 ...gt.AT. CT.gt....

15 ...gt.GT. AG.gt....

16 ...gt..CG .TGgt....

17 ...gt..AT ...gt.GT.

18 ...gt..CT .TAgt....

19 ..GgtG... ..TgtC...

20 ..CgtA... ...gtGG..

Table 3: Top 20 ranked constraints for me2s0. Lower letters refer to donor consensus

positions. Capitalized letters are positional dependencies. All first order constraints

were imposed as default.
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Rank ∆Hi Sign

1 ..Ggt..G. -

2 ...gt.AG. +

3 .AGgt.... +

4 C..gt...C +

5 ...gtAA.. -

6 ..GgtT... +

7 ..GgtC... +

8 ..GgtA... -

9 ...gtTA.. -

10 ..Tgt..T. -

11 ..Tgt..A. -

12 .G.gt..C. -

13 ...gtC.G. +

14 .C.gt..C. -

15 .T.gt..C. -

16 ..Cgt..A. -

17 ..Cgt..T. -

18 ..Agt..T. -

19 ..Agt..A. -

20 ..Cgt..G. +

Table 4: Top 20 ranked constraints for me2x5 for 5’ss. + and - indicate whether the

dinucleotide is more or less frequent than expected under independence assumption,

respectively. All first order constraints were imposed by default.
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Models Constraints CC

me2x2 S2
1,2 0.6291

me2x3 S2
1,2,3 0.6290

me2x4 S2
1,2,3,4 0.6252

me2x5 S2
1,2,3,4,5 0.6229

me2x1 S2
1 0.6259

me3s0 S3
0 0.6300

me2s0 S2
0 0.6172

me4s0 S4
0 0.6075

me1s0 S1
0 0.5568

Table 5: 3’ss Models ranked by ROC analysis(top to bottom), and the corresponding

maximum Correlation Coefficients (CC).
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Sequence me2x5 MDD me2s0 WMM odds ratio

ACGGTAAGT 1 2 5 26 184

TCGGTAAGT 2 3 12 114 77

ACGGTGAGT 3 17 18 90 11

GCGGTAAGT 4 14 10 56 3

ACGGTACGT 5 67 14 292 331

TCGGTGAGT 6 28 34 304 9

CAGGTAAGG 7 26 15 3 13

GAGGTAAGT 8 34 6 4 38

ATGGTAAGT 9 12 46 19 95

AAGGTAAGT 10 10 2 2 12

GACGTAAGT 11 41 136 86 10

CCGGTAAGT 12 1 7 17 22

CCGGTGAGT 13 7 22 68 18

CAGGTACGG 14 99 32 79 68

CAGGTAAGT 15 20 1 1 8

CAGGTAAGA 16 25 13 7 14

CGGGTAAGT 17 15 17 15 2

AAGGTACGT 18 54 8 46 233

AACGTAAGT 19 19 101 38 96

CAGGTGAGT 20 27 4 8 21

Table 6: Ranks of 5’ss sequences by different models.
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predicted positive predicted negative

real positive true positives, TP false negatives, FN

real negative false positives, FP true negatives, TN

Table 7: Confusion Matrix
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2.3 Applications for MaxENTScan and splice site models

The maximum entropy splice site models (MaxENTScan) (as well as a variety of other

splice site models) are available for use online1, taking as input sequences of specified

lengths and returning a MaxENT score for each sequence.  In addition, users can choose

to build their own maximum entropy splice site models2.

2.3.1 Prediction of non-classical splicing mutations

Splice site models can be utilized to predict the result of genomic mutations that disrupt

existing splice sites, or create a competing proximal splice site, thereby causing a disease.

An example of such an application of MaxENTScan to predict the result of splicing

mutations in the ATM gene was recently published [1] and for conciseness will not be

discussed here.

2.3.2 Finding enriched elements in pseudo-exons

 It is well known that human introns contain many sequences that match the consensus

splice site motifs as well as authentic sites, but are never used in splicing.  Pairings of

potential 3' splice sites and potential 5' splice sites, spaced by lengths typical of exons are

referred to as ‘pseudo-exons’ [2].  As only about half of the information required for

accurate recognition of exons and introns in human transcripts are contained in the

                                                  
1 http://genes.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html
2 http://genes.mit.edu/burgelab/maxent/Xmaxent.html
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classical splice signals, it implies that auxiliary elements outside of the classical splice

signals must play important roles in the promotion of authentic splice sites, or

suppression of ‘decoy’ splice sites in pseudo-exons [3].

Recently, exonic splicing silencers (ESSs) were identified using a splicing reporter

system used to screen a random sequence library for short sequences with splicing

silencer activity in cultured human cells.  The potential role of derived ESS motifs in

suppression of pseudo-exons was studied by utilizing the MaxENTScan program to scan

intronic sequences for pseudo-exons (50-250 bp in length) and comparing the frequencies

of occurrence of the ESS sequences in the pseudo-exon dataset (PE) to a constitutive

exon dataset (CE).  Consistent with the expectation that ESSs would be favored in PEs

rather than in constitutive exons, they were substantially underrepresented in CEs versus

PEs (c2 test, P << 2.2 ¥ 10-16).  Furthermore, MaxENTScan was utilized to separate CEs

intro ‘strong’ exons (CEs with both 3'ss and 5'ss in the top quartile of scores) and ‘weak’

exons (CEs with both splice sites in the bottom quartile of scores).  Consistent with our

expectation that exons with weaker splice sites are likely to be more prone to silencing by

ESSs, the set of ESS decamers were found depleted in weak versus strong exons (c2 test,

P << 2.2 ¥ 10-16).  These results are part of a larger study that has been recently accepted

(Wang et al., Cell, in press, 2004).

2.3.3 Splicing simulation: ExonScan

The MaxENTScan algorithm has been incorporated into a first-generation splicing

simulation algorithm called ExonScan, which integrates additional known or putative

splicing regulatory sequences to predict the locations of internal exons in primary
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transcript sequences.  The results of large-scale splicing simulations for a dataset of 1820

human primary transcripts containing a total of 10,891 internal exons indicate that the

version of ExonScan using models of 3'ss and 5'ss motifs alone identified 4,008 exons

correctly at a cutoff where the number of false positive predictions and false negative

predictions are equal, roughly 37% of all exons in the set.  This work has been integrated

into a larger piece of work (Wang et al., Cell, in press, 2004, Rolish et al., unpublished).
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2.4 Splicing cis-regulatory and trans-acting elements

2.4.1 Cis-elements

Splicing cis-regulatory elements are typically short sequences [1-3] which can be divided

into those that enhance the use of neighboring splice sites, called splicing enhancers, and

those that suppress the recognition of splice sites, called silencers.  They can be further

categorized by their site of action, either in exons or introns. Accordingly there are four

major classes of regulatory elements: exonic splicing enhancers (ESEs), exonic splicing

silencers (ESSs), intronic splicing enhancers (ISEs) and intronic splicing silencers (ISSs).

Several groups of ESEs are known, such as purine-rich and AC-rich elements, as well as

others [4, 5].  In comparison, ESS sequences are less studied.  However, recently,

computational screens for ESS motifs have been published [6, 7], one predicting three

ESS motifs, and another predicting 974 octamers with ESS activity.  A notable point is

that the regulatory function of, and by extension, the category of a cis-element is entirely

contextual.  For example G-rich elements are a known ISE in mammalian introns [8], but

when found localized (10 bases) next to the 5'ss of particular exons, will act as an ISS

(Han et al., submitted), and have also been found enriched in a experimental screen for

decamers enriched for exonic splicing silencer activity (Wang et al., submitted).

The successful computational screen and experimental verification of human ESEs by the

RESCUE method [9] motivated application of this method to multiple available

vertebrate genomes (Section 2.4.3).  Not surprisingly, candidate ESE motifs were found
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to be highly conserved in vertebrates.  In fact, this comparative genomic analysis might

be useful in determining the most important or most active subset of ESEs identified in

the original implementation of the RESCUE-ESE method [9].  As an illustration, single-

nucleotide polymorphisms had a lower likelihood of interrupting ESEs conserved across

vertebrates than those found in a single organism [10].  Interested users are able to

annotate predicted RESCUE-ESEs in multiple organisms onto input sequences [11]1.  By

using similarly motivated rules, the RESCUE method was then adapted to find ISEs in

vertebrate genomes, and found interestingly, that dramatic differences in candidate ISEs

exist between mammals and fish.  Systematic studies of differences in the cis-elements

involved with splicing regulation in different organisms is important in studying the

evolution of the splicing process, in particular, the co-evolution of cis-elements and their

associated trans-factors, in the context of an organism’s genomic structure [12].

2.4.2 Trans-acting factors

Cis-regulatory elements generally function by recruiting protein trans-factors that interact

favorably or unfavorably with components of the spliceosome [13, 14].  Most of the

known ESEs are thought to be recognized by members of the serine-arginine rich (SR)

protein family, which also interact with each other and with snRNP proteins to enhance

the recognition of adjacent splice sites [4].  On the other hand, ESSs inhibit the use of

adjacent splice sites, often via interactions with members of the heterogeneous nuclear

ribonucleoproteins (hnRNP) family [15-21].  Large-scale proteomic studies of the factors

                                                  
1 http://genes.mit.edu/burgelab/rescue-ese/
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involved with the splicing machinery have been conducted [22-24], and have led to

associations of hnRNPs and SR or SR-related proteins with different stages of

spliceosomal assembly.

Aside from constitutive splicing, alternative splicing (AS) is regulated precisely in

different developmental stages and tissues [25, 26], and context-specific regulation is

likely to be coordinated by multiple cis-regulatory signals [1, 2].  The tissue-specific

expression of the various trans-factors involved with both alternative and constitutive

splicing and the predominance of certain motifs in exons regulated in the corresponding

tissues will ultimately give us insight into the context-specificity of regulation.  For

example, the N1 exon in the c-src gene, studied extensively by the Black laboratory, is

repressed by the polypyrimidine-tract binding (PTB) protein in non—neuronal cells

where it binds to UC-rich elements on both sides of the exon.  In neurons, the PTB is

replaced with a related neural PTB (nPTB) protein and PTB binding to upstream silencer

elements is destabilized in an ATP-dependent process.  The regulatory region

downstream of the exon, requiring the UGCAUG element, exerts its positive effects

under these conditions and causes inclusion of the exon (reviewed in [26]).
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2.5 Variation in sequence and organization of splicing regu-

latory elements in vertebrate genes

2.5.1 Abstract

Although core mechanisms and machinery of pre-mRNA splicing are conserved from

yeast to human, the details of intron recognition often differ between even closely

related organisms. For example, genes from the pufferfish Fugu rubripes generally

contain one or more introns that are not properly spliced in mouse cells. Exploiting

available genome sequence data, a battery of sequence analysis techniques was used

to reach several conclusions about the organization and evolution of splicing regula-

tory elements in vertebrate genes. The classical splice site and branch site signals are

completely conserved across the vertebrates studied (human, mouse, pufferfish and

zebrafish), and exonic splicing enhancers (ESEs) also appear broadly conserved in ver-

tebrates. However, another class of splicing regulatory elements, the intronic splicing

enhancers (ISEs), appears to differ substantially between mammals and fish, with G

triples (GGG) very abundant in mammalian introns but comparatively rare in fish.

Conversely, short repeats of AC and GT are predicted to function as ISEs in fish but

are not enriched in mammalian introns. Consistent with this pattern, ESE-binding

SR proteins are highly conserved across all vertebrates, while hnRNP proteins, which

bind many intronic sequences, vary in domain structure and even presence/absence

between mammals and fish. Exploiting differences in intronic sequence composition,

a statistical model was developed to predict the splicing phenotype of Fugu introns

in mammalian systems, and used to engineer spliceability of a Fugu intron in human

cells by insertion of specific sequences, thereby rescuing splicing in human cells.

2.5.2 Introduction

The pufferfish, Fugu rubripes, with its sevenfold smaller genome than human, has

proven to be an excellent resource for comparative genomics [1]. The Fugu genome
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also has great potential for applications in genetics. The compactness of Fugu genes

makes them ideal candidates for use in transgenesis, with the advantage over cDNA-

derived constructs that they would be capable of producing all the isoforms of a

particular gene under appropriate regulatory control. However, the potential for us-

ing Fugu genes as natural mini-genes for the production of transgenic mice has not

been realized as initial efforts to express Fugu transgenes in mouse cells have failed

due to incorrect transcript processing by the murine splicing machinery [2, 3]. How-

ever, Fugu genes studied to date are spliced and translated correctly in zebrafish, a

fish whose genome size and gene organization are more similar to mammals than to

Fugu.

These somewhat surprising results imply that substantial differences exist between

fish and mammalian systems in exon-intron sequences and/or splicing factors. The

relatively low information contents of the classical splice site signals in higher eukary-

otes argues that additional transcript features are likely to be involved in recognition

and splicing of many, if not all introns [4]. Exonic splicing enhancers (ESEs), intronic

splicing enhancers (ISEs) and exonic or intronic splicing silencers can enhance or re-

press the use of 5′ or 3′ splice sites (5′ss, 3′ss), depending on their site and mode of

action [5, 6, 7, 8]. ESEs have been the subject of many studies and most are known

to be recognized by members of the serine-arginine-rich (SR) protein family [9, 10].

SR proteins bind to ESEs through their RNA-binding domains and promote splicing

by recruiting spliceosomal components through protein-protein interactions via their

arginine-serine-rich (RS) domains [9, 11, 12, 13]. The trans-factors that bind to in-

tronic splicing regulatory elements have not been characterized as thoroughly, and

both SR proteins and heterogeneous nuclear ribonucleoproteins (hnRNPs) have been

implicated in interactions with intronic cis elements.

Using the human [14], mouse[15] and Fugu[16] genome sequences, we applied and

adapted the RESCUE approach for identification of splicing regulatory sequences [17],
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and developed new methods to analyze similarities and differences in the sequences

and organization of splicing regulatory elements in mammalian and fish genes. These

methods revealed significant differences in predicted ISEs between mammalian and

fish introns which appear to explain why certain Fugu introns are not faithfully pro-

cessed by the mammalian splicing machinery.

2.5.3 Methods and Materials

Frequency Difference Plots The difference between the observed frequency of a

pattern (enumerated as in Table 3, supporting information) occurring in windows of

size 10-bp (exons of size >60 bp) or 30-bp (intronic region) and the mean frequency

of the same pattern in 10 random permutations (shuffles) of the sequence in the win-

dow were determined as follows, with an offset of 3 bp between successive windows.

The observed frequency of a pattern of length m bp in a window of size W bp, at

position j in sequence i is defined as fobserved,i,j =
xi,j

W/m
, where xi,j is the number of

non-overlapping occurrences of the motif whose first positions fall within the win-

dow (i.e. excluding occurrences that overlap previously counted occurrences). The

average shuffled frequency of the motif out of s total shuffles of the same window is

defined as favgshuffled,i,j = 1

s

∑s
k=1

y
i,j,k

W/m
, where yi,j,k is the number of non-overlapping

occurrences of the motif in the kth shuffled version of the same window of size W bp,

at position j in sequence i. Therefore, the frequency difference (FD) of the motif at

position j in sequence i is defined as FDi,j = fobserved,i,j − favgshuffled,i,j . The mean

FD value µj and variance σ2
j in a window of size W bp starting at position j over N

sequences are calculated as µj = 1

N

∑N
i=1 FDi,j and the standard error of the mean

(SEM), ε, is derived as ε = σ√
N

, where σ2
j = 1

N−1

∑N
i=1(FDi,j − µj)

2.

Linear Discriminant Analysis and Intron Classification Linear discriminant

functions g1 and g2 for n1 Fugu introns and n2 mouse introns, respectively, were de-

fined as gi(x) = wt
ix + bi, where wi = Σ−1µi and bi = −0.5µt

iΣ
−1µi, and x is the
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vector of overlapping 3-mer counts computed from +5 to +65 of the intron and from

-71 to -11 of the intron. Σ is the pooled covariance matrix from the individual covari-

ance matrices: Σ = ((n1−1)Σ1 +(n2−1)Σ2))/(n1 +n2−2). The linear discriminant

analysis (LDA) output [18], y, is defined as y(x) = g1(x) − g2(x). The intron length

score, slen, was defined as slen(l) = log(fFugu(l)/fmouse(l)), where l is the length of

the intron, and fFugu and fmouse are the estimated frequencies of introns falling into

the relevant intron length bins in the respective organisms (Fig. 13, supporting infor-

mation). Scores were generated which combine the intron length scores and the LDA

outputs for Fugu and mouse introns in the following way: z(x, l) = y(x) + slen(l),

where x represents a 128-long vector of 3-mer counts from an intron, and l is the

intron length.

2.5.4 Results

Splice Site Signals and Predicted ESEs are Conserved in Vertebrates. In

order to identify potential splicing differences between different vertebrate organisms,

three major classes of cis-acting elements were systematically analyzed: the canoni-

cal splice site/branch site motifs, and two classes of splicing enhancers. Using large

datasets of annotated exon-intron structures, we found that the extended consensus

sequences of the classical 5′ss and 3′ss sequence motifs are essentially the same in

human, mouse, zebrafish and Fugu (these data are shown in Fig. 7A, which is pub-

lished as supporting information on the PNAS web site, www.pnas.org). Putative

branch point sequences identified using a motif finding algorithm also appear similar

in sequence and are positionally conserved in orthologous mouse, human and Fugu

introns, occurring most commonly 20 to 40 bases upstream of the 3′ss (Fig. 7B,

supporting information). These data suggest that neither the branch point motif nor

the 5′ss or 3′ss differ significantly between fish and mammals in the features required

for recognition by the splicing machinery, and that the observed differences in splicing

between these systems must lie elsewhere.
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Both constitutive and alternative splicing events are often modulated by elements in

exons known as exonic splicing enhancers (ESEs). In order to assess potential differ-

ences in ESE sequences between organisms, we applied the RESCUE-ESE approach

that was used previously to identify ESEs in human genes [17] to large datasets of an-

notated mouse and Fugu genes (Table 2, supporting information; access to RESCUE-

ESE hexamers for each of these organisms are available at http://genes.mit.edu/burgelab/rescue-

ese/ [19]). Sets of candidate ESE sequences that satisfy the two RESCUE-ESE crite-

ria of significant enrichment in exons relative to introns and significant enrichment in

exons with weak (non-consensus) 5′ss or 3′ss sequences relative to exons with strong

splice sites were identified. Previously, predicted human ESE hexamers were clustered

into ten groups on the basis of sequence similarity [17], and then aligned to produce

ten distinct ESE motifs (Fig. 1A). Comparing the candidate mouse and Fugu ESE

hexamers with those identified in human exons, a great deal of overlap was observed,

with many of the same hexamers identified independently in different organisms. For

example, 90 out of the 100 hexamers comprising the purine-rich human 5C3D class

were also predicted as ESEs in mouse, and 54 of these 100 hexamers were predicted

as ESEs in Fugu exons (Fig. 1A). Of the ten clusters of human ESEs identified, only

the smallest (cluster 5E) was not represented in mouse. Furthermore, seven of the

ten human clusters were represented in Fugu, the exceptions being three of the most

sparsely populated human ESE clusters. Thus, RESCUE-ESE analysis supports the

presence in all three vertebrates of all of the large classes of ESEs identified in humans.

To further explore potential ESE-related differences between organisms, we ana-

lyzed the frequency difference (FD) plots of RESCUE-ESE hexamers along exons

from each of the three vertebrates in sliding windows of ten bases in width. As shown

for the 5C3D cluster (Fig. 1B), most clusters of RESCUE-ESE hexamers exhibit a

concave (’smiley’) distribution, with increased FD values in the vicinity of both the 5′

and 3′ splice sites. This distribution is likely to result from increased selection to con-
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serve ESEs near splice sites, which would be consistent with previous studies showing

that ESEs located closer to the 3′ss of exons have higher activity than those located

more distally [20], and that ESE-disrupting single-nucleotide polymorphisms (SNPs)

are under-represented in exons near splice sites [21]. For the majority of ESE classes,

the shapes of the FD plots were similar in human, mouse and Fugu (Fig. 1A and Fig.

9, supporting information). The conservation of the splice site-biased distributions

of many classes of predicted ESEs between human, mouse and Fugu argues for their

functional importance in all three vertebrates.

Predicted ISEs Differ Between Mammals and Fish. In addition to exon

sequences such as ESEs, intronic elements also commonly play a role in alternative

and constitutive splicing [22]. To identify putative intronic splicing enhancers (ISEs)

in vertebrate introns, we developed an approach called RESCUE-ISE (supporting

information). Following a similar rationale to that used in our previous RESCUE-

ESE method [17], RESCUE-ISE predicts as ISEs hexamers that share two properties:

significant enrichment in introns relative to exons, and significant enrichment in in-

trons with weak (non-consensus) 5′ss or 3′ss relative to introns with strong splice

sites. Applying this method to large datasets of human and mouse introns identi-

fied the triplet motif GGG and a C-rich motif respectively in both mammals (Fig.

2). The GGG and C-rich hexamer clusters together comprised 96% (127 hexamers)

of RESCUE-ISE predicted ISE hexamers in introns downstream of human 5′ss, and

89% (266 hexamers) of predicted ISE hexamers in introns upstream of human 3′ss.

Similar clusters comprised comparably large proportions of RESCUE-ISE hexamers

in mouse; the few remaining hexamers did not cluster into motifs that were similar

between human and mouse.

Curiously, when the RESCUE-ISE approach was applied to datasets of Fugu introns,

a very different set of ISE motifs was predicted (Fig. 2), including motifs containing

repetitions of CA and GT dinucleotides, but no motifs similar to the GGG or C-rich
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elements identified in mammals. To further explore this difference, a more detailed

analysis of the predicted ISE motifs was undertaken in mammalian and fish introns,

using the sea-squirt Ciona as an outgroup. From analysis of FD plots (Fig. 3), two

trends were clear: (i), for GGG, an established mammalian ISE [23], there were pro-

nounced peaks in the FD distribution in the vicinity of the 5′ and 3′ss in both human

and mouse introns; and (ii) these peaks were much more dramatic in introns with

weak (non-consensus) 5′ or 3′ss than they were in introns with strong splice sites (red

versus blue curves in figure). These two features can be explained if the location of

the peak reflects an optimal interaction distance between hypothetical splicing regu-

latory factors that bind to ISEs and components of the splicing machinery bound at

the splice sites, and if ISEs in weak-ss introns are under increased selection to ensure

efficient and accurate splicing [22]. We propose that these two features comprise a

sequence signature that is characteristic for ISEs.

Consistent with the differences seen in terms of predicted ISE motifs, the FD plots

for Fugu introns were substantially different than those for mammalian introns (Fig.

2). Specifically, GGG was not enriched at any distance relative to the 5′ or 3′ss of

Fugu introns (all FD values near zero), and had a nearly flat distribution, consis-

tent with the absence of function in splicing. Instead, the predicted Fugu ISE motifs

ACAC and GTGT showed pronounced FD peaks near the 5′ and 3′ss of Fugu introns,

respectively, which were comparable in magnitude to those seen for GGG in mam-

malian introns. Consistent with this pattern, the peaks were more dramatic in introns

with weak 5′ and 3′ss. By contrast, the distributions of ACAC and GTGT near the

5′ and 3′ss of mammalian introns were essentially flat, with no discernable peaks and

no difference between weak and strong introns. The introns of the non-vertebrate

chordate Ciona intestinalis showed modest peaks of GGG near the 5′ and 3′ss but

no clear peaks for ACAC or GTGT, and the GGG peaks in Ciona were higher for

strong-ss rather than for weak-ss introns.
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Exon and Intron Definition Mechanisms May Differ Between Mammals

and Fish. The “exon definition” model of splicing postulates that the exon is the

primary unit initially recognized by the splicing machinery, typically involving a com-

plex formed across the exon containing factors that recognize the 3′ss, one or more

ESEs and the 5′ss of an exon [24]. This mode of splicing appears to predominate

in transcripts containing small or medium-sized exons flanked by long introns [25].

On the other hand, in splicing by the “intron definition” model, the intron is the

primary unit initially recognized by the splicing machinery, with formation of a com-

plex of factors recognizing the 5′ss, ISE(s), and the 3′ss of an intron [24]. This mode

of splicing tends to predominate in transcripts containing short introns flanked by

medium-sized or large exons [25]. To analyze the effects of flanking intron length on

the distribution of putative ESEs and ISEs in vertebrates, introns were categorized

by length as either short (<125 bp), intermediate (125-1000 bp), or long (>1000 bp).

In human and mouse, exons flanked by longer introns contained a significantly

higher abundance of most classes of RESCUE-ESE hexamers than those flanked by

intermediate-length introns which, in turn generally contained more such ESEs than

exons flanked by short introns (Table 4 and Fig. 11, supporting information). Fur-

thermore, short mammalian introns had higher relative frequencies of the candidate

ISEs GGG and CCC near their splice sites than intermediate or long introns (Fig.

12, supporting information). Surprisingly, the relationship between ESE density and

intron length was different in Fugu genes. In Fugu, there was no tendency for exons

flanked by long introns to have higher densities of RESCUE-ESE hexamers - in fact,

the opposite tendency was observed for several ESE classes (Table 4, supporting in-

formation). Furthermore, predicted ISE motifs ACAC and GTGT were more highly

enriched in intermediate and long introns than in short introns (Fig. 12, supporting

information). Our proposed model is summarized in Figure 4.

Differing Conservation of SR Protein and hnRNP Genes Between Mam-
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mals and Fish. Conservation of cis-regulatory elements between organisms is ex-

pected to correlate with patterns of conservation of the corresponding trans-factors.

To explore these relationships with respect to splicing in vertebrates, lists of human

splicing factors identified previously through proteomic analysis by Zhou et al. [26]

were utilized to identify mouse and Fugu orthologs from the EnsMart database using

reciprocal best BLAST hits. Domains were then predicted using PFAM [27] and the

results are shown in Tables 5-8 in supporting information. Core spliceosomal com-

ponents such as snRNAs and proteins of the U1 snRNP, U2 snRNP and U4/U5/U6

tri-snRNP are highly conserved between mammals and fish (Table 5, supporting in-

formation, and data not shown). Additionally, clear orthologs with identical domain

organization could be found in mouse and Fugu for all human SR proteins (Table

6, supporting information), nearly all of which are known to recognize ESEs, consis-

tent with our analysis indicating that the major RESCUE-ESE classes are conserved

between human, mouse and Fugu. However, greater variability was seen in the do-

main organization and even presence/absence of H-complex hnRNP proteins, many

of which are known to bind ISEs or other intronic elements (Table 7 and 8, supporting

information). For example, Fugu and zebrafish orthologs for hnRNP A2/B1 [28, 29]

and hnRNP F were not identified, and fish orthologs for hnRNP H and hnRNP K

were missing one or more of their RRM and/or KH domains, compared to human and

mouse orthologs. In addition, Fugu orthologs for hnRNP RALY was not found and

hnRNP I(PTB) was missing a RRM. Given that the Fugu and zebrafish genomes are

not yet complete ( 95% covered in Fugu and 5.7x coverage in zebrafish) and genome

annotations are still evolving, absence of a detectable ortholog from current assem-

blies does not necessarily imply that an orthologous gene does not exist. Nevertheless,

current data suggests greater variability in hnRNP proteins between mammals and

fish than was seen for SR proteins.

Discrimination of Mammalian and Fugu Introns. The results reported above

suggest that the critical differences in splicing between Fugu and mammalian introns
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may reside primarily in the abundance and locations of specific short oligonucleotides

with ISE activity, with intron length-dependent effects also playing a role. To ex-

plore this idea, a model based on linear discriminant analysis (LDA) was developed

which utilizes intron length and non-overlapping 3-mer counts (including GGG and

CCC) as features to predict whether a given Fugu intron will be correctly spliced in

mammalian cells (Fig. 13, supporting information). Introns of the Fugu RCN1, HD

and ARP3 genes [2, 3, 30] were scored with this model (Fig. 5). Comparing the

scores of Fugu introns to their splicing phenotypes in mammalian cells, a correlation

was observed, with the highest-scoring (most Fugu-like) introns generally failing to

splice in mammalian cells, and introns with scores in the range observed for natural

mouse introns almost always splicing correctly (Fig. 5). Thus our method recognizes

intronic features that differ between Fugu and mammalian introns, and appears able

to predict the spliceability of Fugu introns in mammalian cells. Independently of

RESCUE-ISE, this method ranks G triples, C-rich motifs, and AC repeats as critical

features that distinguish fish and mammalian introns.

Rescuing Splicing of Fugu Introns in Mammalian Systems. Our experience

with the LDA model suggested that changing the sequence composition of a Fugu

intron that was mis-spliced in mammalian cells by adding sequences that function as

ISEs in mammalian introns might rescue the splicing phenotype. To test this idea,

a Fugu ARP3 construct (Fig. 14, supporting information) was transfected into hu-

man 293T cells and into a fish (minnow) cell line, PLHC-1 (supporting information).

Following splicing, cDNA was synthesized by reverse transcription, and PCR using

primers targeting exon 1 and exon 12 revealed 1.2 kb products in both cell lines.

To assess the pattern of splicing, both 1.2 kb transcripts were cloned into pGEM-T

vectors and sequenced. The presence of aberrant splicing was confirmed in the 293T

cell line while the transcript from the PLHC-1 cell line was spliced correctly. In 293T

cells, introns 4 and 9 were retained, exon 7 was skipped, and exon 5 was truncated

by use of a cryptic 5′ss. Based on the LDA model, we attempted to rescue splicing
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of Fugu ARP3 intron 4 by insertion of sequences similar to the G1 and G2 G-triples

from intron 2 of the human alpha globin gene into the Fugu intron [23]. Insertion of

these sequences reduces the score of the intron substantially, to a score range where

tested Fugu introns have generally spliced correctly (Fig. 5). The wild type intron of

length 88 was mutated using site-directed mutagenesis to generate two mutants with

a single and double G-triplet located near the 5′ splice site resulting in mutant introns

99 bases and 107 bases long, respectively. These two mutant constructs were trans-

fected into human 293T cells and cDNA was synthesized under the same conditions

as before, and PCR with primers flanking the intron was used to assess the degree of

splicing. A single G2 insert was sufficient to partially rescue splicing of intron 4 (Fig.

6, supplementary information). Insertion of both G1 and G2 increased the level of

splicing to that seen in the PLHC-1 cell line. Thus, changing the ISE composition

of a mis-spliced Fugu intron as guided by the LDA model restored levels of correct

splicing in mammalian cells comparable to that seen in fish.

2.5.5 Discussion

Core components of the spliceosome are universally conserved in higher eukaryotes,

but less is known about the conservation of the sequences and factors that regulate

splicing. The observation that some Fugu introns are not properly spliced in mam-

malian cells suggests that substantive differences in splicing exist between mammals

and fish. Here, we conducted a large-scale bioinformatic study of cis-elements and

trans-factors that are important in splicing, comparing mammalian and fish genomes

to identify similarities and differences between organisms.

Sequence motifs at the 5′ and 3′ splice sites were not significantly different between

mammalian and fish genes, and predicted branch site motifs are also quite similar.

Applying the RESCUE-ESE approach to identify candidate ESEs in human, mouse,

and Fugu exons, substantial overlap in the sets of predicted ESE hexamers was found
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(Fig. 1A). Previously, the ESE activity of representatives of ten candidate human

ESE motifs predicted by RESCUE-ESE were confirmed using an in vivo splicing

reporter assay, demonstrating high predictive accuracy for this method [17]. The va-

lidity of the cross-species RESCUE-ESE predictions are further supported by a recent

study which found that the hexamers predicted here as ESEs in multiple vertebrates

are significantly less likely to be disrupted by SNPs in human than those restricted

to a single species [21]. Additional evidence of conserved function comes from FD

plots, which document similar positional biases in RESCUE-ESE motifs along hu-

man, mouse and Fugu exons (Fig. 1B and Fig. 9, supporting information). High

conservation of splice site and predicted ESE motifs across vertebrates was mirrored

in patterns of splicing factor conservation. Orthologs for all ten human SR proteins

were identified in mouse and Fugu, and domain structure was preserved.

To explore potential differences in intronic splicing enhancers (ISEs), we introduced

RESCUE-ISE, a computational method to predict intronic splicing enhancers (ISEs).

RESCUE-ISE and FD plot analysis identified GGG, a known mammalian ISE con-

served in human and mouse [8], but did not identify any related motifs in Fugu or

zebrafish introns (Fig. 2). In addition to GGG, a C-rich motif is also over-represented

in introns near splice sites in human and mouse, but not in Fugu or zebrafish (Fig.

10, supporting information). Enrichment of CCC and GGG in human introns has

also been observed previously, e.g., [31, 32], and references therein. McCullough and

Berget showed that GGG elements in human introns can base pair to nucleotides 8

to 10 of U1 snRNA, recruiting U1 snRNP to the vicinity of the 5′ss [8]. Other splic-

ing factors have also been implicated in binding to G-rich regions and influencing

splicing, including hnRNPs A1, F, H and other members of the hnRNP H family

[33, 34, 35, 36]. H complex hnRNP proteins, which often bind to exonic splicing si-

lencers and intronic regulatory sequences, were less conserved between mammals and

fish. Orthologs of hnRNP A1 and H were identified in all three vertebrates, but an

ortholog for hnRNP F was not detected in the Fugu genome. Furthermore, the fish
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orthologs of hnRNP H appears to lack an RRM present in both mammalian proteins.

Other differences in hnRNP genes were also observed, including the apparent absence

of hnRNPs A2/B1 and RALY from the Fugu genome. Two of these genes (hnRNP F

and A2/B1) appear to be absent from the zebrafish genome as well, suggesting that

these represent true gene losses in the fish lineage rather than genes missed due to

the incompleteness of current genome assemblies or annotations. These differences

in intron-binding factors between mammals and fish may explain why certain mam-

malian ISEs appear absent from fish.

Applying RESCUE-ISE to a dataset of Fugu introns identified short repeats of CA

and GT dinucleotides as candidate ISEs in this organism (Fig. 2, motifs f3A, f5A).

FD plots support a role for ACAC and GTGT sequences as enhancers of introns with

weak 5′ss and weak 3′ss, respectively, in both Fugu and zebrafish (Fig. 3C,D). These

elements have not been identified as ISEs involved in constitutive splicing in mam-

mals. However, a recent study showed that hnRNP L binds specifically to CA repeats

to enhance alternative splicing of an upstream exon in the human endothelial nitric

oxide synthase gene [37], and an ortholog of hnRNP L is present in Fugu. GU repeat

sequences were also recently shown to function as ISEs involved in tissue-specific al-

ternative splicing of the human cardiac sodium calcium exchanger gene [38]. ETR-3

and the neuroblastoma apoptosis-related RNA-binding protein (NAPOR), an isoform

expressed from the CUGBP2 gene, bind to GU-rich sequences in certain mammalian

introns and enhance alternative splicing [39, 40]. Orthologs of both genes are also

present in Fugu. A search of the literature identified known mammalian splicing reg-

ulatory elements similar to candidate Fugu motifs f5D (TAG) [41] and f5E (T-rich)

[42]. However, our search did not identify known elements similar to motif f5C, with

consensus [A/T]TAC[A/T], whose potential role in splicing will require experimental

tests. These observations suggest a model in which certain repetitive motifs used

primarily to regulate alternative splicing in mammals have evolved a more prominent

role in constitutive splicing in fish, despite substantial reduction in repeat content in
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the Fugu genome.

In addition to the differences in the sequences of putative splicing regulatory el-

ements described above, the organization of these elements also appears to differ

between mammalian and fish genes. In mammalian genes, there is a compensatory

relationship between ISEs and ESEs. Exons flanked by long introns are enriched

in ESEs and deficient in nearby ISEs, whereas exons flanked by short introns are

deficient in ESEs and enriched in nearby ISEs (Fig 4. and Fig. 11, supporting infor-

mation). These observations are consistent with current splicing models for human

transcripts, in which exons flanked by long introns are spliced by exon definition,

which is generally dependent on ESEs, and short introns are recognized by an intron

definition mechanism [25]. Sterner and colleagues observed that expanded human

exons were efficiently included if flanking introns were at most 500 bp long, but were

skipped if the introns were expanded [25], implying an upper bound of 500 bases for

intron definition in mammals. The compaction of the Fugu genome has resulted in

approximately 80% of introns being under 500 bases in length, presumably leading

to a massive increase in intron definition. In contrast to what is seen in mammals,

long Fugu introns have increased frequencies of putative ISE motifs relative to short

Fugu introns, suggesting that even long Fugu introns may often be spliced by intron

definition.

Our observations that putative ISE sequences differ substantially between mam-

malian and fish introns suggested that addition of mammalian ISEs to improperly

spliced Fugu introns could rescue splicing in mammalian systems. Linear discrimi-

nant analysis was used to combine the sequence and architectural features that dis-

tinguish mammalian and fish introns. As an application, we inserted GGG sequences

into intron 4 of the Fugu ARP3 gene. This modification was predicted by the LDA

analysis to rescue splicing in mammals (FIg. 5) and, indeed, this modified intron was

spliced in human cell lines at a comparable level to that of the wild-type intron in

80



a fish cell line (Fig 6). Thus, our computational analysis has applications for effec-

tive transfer of genetic information between vertebrates. This study also represents

a paradigm for analyzing the evolution of gene expression regulation. Comparative

genomic approaches similar to those described here should be applicable to other

steps in gene expression, including transcription and translation, that are modulated

by widespread cis-regulatory elements.
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Table Legends

Table 1. Conservation of splicing factors between human, mouse and Fugu.

Domains refer to predicted RNA recognition motifs (RRMs) and KH domains. Full

tables listing accession numbers and Ensembl identifiers for all trans-factors analyzed

are provided in Tables 5-8, supporting information.
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Figure Legends

Figure 1. Conservation of RESCUE-ESE sequences and distribution in

vertebrates. A. RESCUE-ESE [17] motifs, the number of predicted ESE hexamers

in mouse and Fugu that overlap with RESCUE-ESE hexamers in human and the

distribution of human RESCUE-ESE hexamers in sets of orthologous human, mouse

and Fugu exons. +/− refers to significant increasing/decreasing frequency difference

gradient towards the respective splice site. 0 indicates no gradient (computed simi-

larly as described in Table 4, supporting information). * refers to conservation only

in human and mouse, otherwise sign of gradient was conserved in all three organisms.

B. As an example, the frequency difference plots for hexamers of RESCUE-ESE class

5C3D are shown as a function of distance from the 3′ss (left plot) or 5′ss (right plot)

of orthologous exons in human, mouse and Fugu. Each point represents the start of

a window of size 10 bases. Values are plotted at intervals every 6 bases. Black bars

show standard error of the mean (Methods).

Figure 2. RESCUE-predicted mammalian and Fugu ISE motifs. GGG and

C-rich motifs were predicted as ISEs in human and mouse introns at both splice sites.

f5A-E are motifs enriched in Fugu introns near the 5′ss, and f3A-C are enriched near

the 3′ss.

Figure 3. Enrichment of predicted ISEs in introns near weak splice sites.

A. Frequency difference of GGG downstream of strong 5′ss and weak 5′ss, relative

to locally permuted sequence windows of size 30 bases, starting from intron position

+11. B. Frequency difference of GGG upstream of strong 3′ss and weak 3′ss, starting

from intron position -41. C. Frequency difference of ACAC downstream of strong 5′ss

and weak 5′ss, starting from intron position +11. D. Frequency difference of GTGT

upstream of strong 3′ss and weak 3′ss, starting from intron position -41. Black bars

show standard error of the mean (Methods). Values are plotted at intervals every 6
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bases.

Figure 4. Model of association between intron length and distribution of

splicing regulatory elements Green triangles represent the enrichment of RESCUE-

predicted ESEs near the splice sites in human, mouse and Fugu exons. Red triangles

represent the enrichment of RESCUE-predicted ISEs near the splice sites in human,

mouse and Fugu introns. The height of the triangles illustrates the relative magnitude

of enrichment of RESCUE-ESEs and RESCUE-ISEs. Intron sizes in base pairs (bp)

are indicated above introns.

Figure 5. Classification of vertebrate introns. Distribution of model scores for

independent sets of orthologous mouse and Fugu introns and splicing phenotypes for

introns 1 to 5 the Fugu RCN1 gene [3], introns 1 to 7 the Fugu HD gene [2], and introns

1 to 11 of the Fugu ARP3 gene. Full details given in Fig 13C, supporting information.
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Table 1. 
 
Trans-factors Mouse  Fugu 
SR Proteins   
Domains same as human 10/10 10/10 
Domains changed 0/10 0/10 
Missing 0/10 0/10 
   
hnRNPs   
Domains same as human 13/14 7/14 
Domains changed 1/14 4/14 
Missing 0/14 3/14 
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Supporting Text

RESCUE-ESE and RESCUE-ISE

In order to identify oligonucleotides of size k (k-mers) that are over- (or under-) represented in one set of sequences

relative to another, we assigned a difference score as follows. For sequence sets A and B totaling NA bp and NB bp,

respectively, a k-mer occuring fA times in set A and fB times in set B is assigned a score ∆AB:

∆AB =
(fA − fB)√

(1/NA + 1/NB)g(1 − g)
(1)

where g = (NAfA+NBfB)
(NA+NB) . A statistical significance threshold of 2.5 standard deviations above (or below) the mean

(corresponding to a P-value of ≈ 0.01) allows us to identify significantly over- or under-represented k-mers. Following

the logic used previously to identify ESE sequences [1], we define predicted 5′ ISE oligonucleotides as k-mers that

have the following two properties: (i) significant over-representation in introns versus exons; and (ii) significant over-

representation in introns with weak 5′ splice sites (W5 introns) versus introns with strong 5′ splice sites (S5 introns).

To meet the first criterion, a k-mer must satisfy ∆E5, I5 < −2.5, where, as in the RESCUE-ESE approach, E5 and

I5 are sets of exon and intron sequences that include sequences within 200 bases from the 5′ splice site (i.e. including

the the entire sequence of exons ≤ 200 bases in length and the first 200 bases of longer exons, and analogously for

introns). This convention is based on the reasoning that most ISEs that influence 5′ splice site choice are likely to

be located near the 5′ss and it also helps to prevent very long introns (or exons) from exerting undue influence on

the k-mer frequencies used. To meet the second criterion, a k-mer must satisfy ∆W5I, S5I > 2.5, where W5I is

the set of introns whose 5′ splice site weight matrix model (WMM) scores are in the bottom 25% of all introns, and

S5I is the set of introns whose 5′ splice site WMM scores are in the top 25% of introns. Analogously, predicted

3′ ISE oligonucleotides are defined as k-mers satisfying ∆E3, I3 < −2.5 and ∆W3I, S3I > 2.5. Candidate ISE

oligonucleotides are then clustered using the protocol devised in the RESCUE-ESE approach [1].

Spliced Gene Sets

Ensembl (http://www.ensembl.org/) core datasets for Fugu rubripes 11.2, Danio rerio 11.08, Homo sapiens 11.31

and Mus musculus 11.3 were used in this analysis [2]. We also downloaded 1,512 Danio rerio genes from Ensembl.

Ciona intestinalis genomic and transcript sequence data were downloaded from the Department of Energy Joint

Genome Institute website [3]. We aligned the 15,852 mRNAs to the genome using sim4 [4] to generate 55,404 exons

and 82,064 introns.

Ortholog Identification

A list of known orthologous human, mouse and Fugu genes (21,804 entries) were obtained from EnsMart

(http://www.ensembl.org/EnsMart/). The list was parsed to keep only genes that are present in all three species,

a total of 8,520 sets of non-redundant orthologous genes. For an orthologous set of human, mouse and Fugu genes,

exons in human were first aligned to exons in the orthologous mouse gene using BLAST (with thresholds of bit
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score greater than 20 and percent identity greater than 75%), and were retained if the highest scoring pairs of exon

are contiguous. This procedure was repeated by aligning the exons of the same human gene against the exons of

the orthologous Fugu gene, and the subset of human exons that had observed orthology with both mouse and Fugu

defined the final set of orthologous exons across human, mouse and Fugu. The 10,580 orthologous introns were

defined as introns with flanking conserved orthologous exons defined as above.

Trans-factor Datasets

Accession numbers of known SR proteins, non-snRNP splicing proteins, H complex proteins and a subset of snRNP

proteins were obained from Zhou et. al. [5]. Motifs were predicted by hmm-pfam using the PFAM database[6].

The orthologous Ensembl gene identifiers (version 16) and abbreviations are represented in Tables 5-8 of supporting

information.

Classical Splice Signals

The sequence patterns in Fig. 7A (supporting information) are constructed using the Pictogram program

(http://genes.mit.edu/pictogram.html). The frequencies of the four DNA nucleotides A, C, G and T are repre-

sented by the heights of the corresponding letters, with the letters shown in decreasing order of frequency from top

to bottom. 5′ splice sites are represented by aligning sequences from positions -3 to +6 and 3′ splice sites were

derived by aligning sequences from positions -21 to +3 of introns. The number of human, mouse, Fugu and Ciona

5′ and 3′ splice sites used to determine a consensus motif were 100,391 5′ss and 100,365 3′ss for human, 91,417 5′ss

and 91,241 3′ss for mouse, 109,867 5′ss and 108,572 3′ss for Fugu and 69,934 3′ss and 70,755 5′ss for Ciona (obtained

from spliced gene sets described above).

Distribution of Putative Branch signals

Branch signals were identified using the Gibbs sampling algorithm [7] as described previously in [8], demanding an

A in position 6, using a dataset of introns between 60 and 500 bases long. Weight matrix models (WMMs) of the

branch signals for human, mouse and Fugu were used to score the sequences that generated the consensus to find the

thresholds for potential branch signals in a 100 bp region upstream of the 3′ss. The thresholds were set to be half a

standard deviation below the mean (Thresholds in bits: human ( 6.64), mouse (6.58) and Fugu (6.80)). 7-mer motifs

scoring higher than this cutoff in 30 base windows are defined to be possible branch signals. Background frequencies

of A:0.3, C:0.2, G:0.2 and T:0.3 were determined for human and mouse and A:0.27, C:0.23, G:0.23 and T:0.27 for

Fugu. We determined the frequency of occurrences of potential branch signals in 30 base windows in our orthologous

intron dataset, excluding 10 bases upstream of the 3′ss (Fig. 7B, supporting information). 1,343, 1,154 and 956, 228

and 638 sequences comprise the branch signals for human, mouse, Fugu, zebrafish and Ciona respectively.

Clustering hexamers

A similar clustering procedure described previously was used to cluster hexamers [1]. Each pair of hexamers is

assigned a dissimilarity distance defined as the number of shifts plus the number of mismatches in the best local
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alignment of the two hexamers. The resulting dissimilarity matrix was used to cluster the hexamers using standard

average linkage hierarchical clustering implemented in the R statistical package. Clusters were defined by suitable

cutoffs and hexamers in each cluster of 4 or more members were aligned using ClustalW with default parameters.

Pictogram (http://genes.mit.edu/pictogram.html) was used to generate each motif, with pseudocounts to pad edge

positions not present in all positions.

Construction of the Arp3N1 plasmid

The Fugu Arp3 gene spanning from 1.4kb upstream of the transcription start to 2.7kb downstream of the polyadeny-

laition signal sequence was cloned into an EcoRI site in pBluescript II KS as described previously [9]. This plasmid

was digested with SacI and cloned into another pBluescript II KS vector. This was followed by a partial digestion

with NotI and SacI. The resulting fragment was cloned into the pEGFPN1 expression vector containing the highly

inducible CMV promoter while removing the reporter gene in the process. This resulted in a 7.9kb Arp3N1 construct

which is expressible in both mammalian and fish cell lines.

Cell Culture

293T (human embryonal kidney) and PLHC-1(top minnow hepatoma) were obtained from American Type Culture

Collection. Both cell lines were cultured in Dulbecco’s modified Eagles medium and supplemented with 10% fetal

calf serum, anti-mycotic, penicillin and streptomycin. 293T was grown at 37 ◦C in 5% CO2 while PLHC-1 cells were

grown at 25 ◦C in 5% CO2 .

Transient Transfection

293T cells were plated onto 6-well tissue culture collagen plates and grown to 95% confluency. PLHC-1 cells were

plated onto 6-well tissue culture plates and grown to 95% confluency. Transfection was performed by complexing the

Arp3N1 construct with the cationic lipids DMRIE-C (Invitrogen), according to manufacturer’s instruction. 2µg of

DNA per well was used. The transfection mix was then added to the 293T and PLHC-1 cell lines and incubated for

6 h at 37 ◦C and 25 ◦C respectively. Transfection was stopped by adding 2 ml cell media and 35 µl/ml fetal bovine

serum and the cells were incubated for a further 36 hours.

Aberrant splicing products

Total RNA was isolated from cell cultures following induction using the TRIZOL reagent (Gibco-BRL). RNA

was treated with Dnase I to remove any traces of genomic DNA. cDNA was synthesized using the Super-

ScriptTM One-Step System from Invitrogen. The Arp3 cDNA was amplified by PCR using three sets of gene

specific primers, ARF1: 5′-ACACATGGC GGGCCGTCTAC-3′, ARR1: 5′-GGTTGTGGCGGCAGATGCTG-

3′; ARF2: 5′-CCTCCTCTGAACACGCCAGAG-3′, ARR2: 5′-GGCGTTGATGCCTGTGTACTG3′; ARF3: 5′-

CATCGTTGAGGACTGGGACCTG-3′, ARR3: 5′-GCGTGTTCAGAGGAGGCTCCG-3′. The region amplified by

ARF1 and ARR1 spans exon 1 and exon 12 of the ARP3 transcript and would result in a 1.2kb PCR product if

spliced correctly. The region amplified by ARF2 and ARR2 spans exon 5 and exon 8 of the ARP3 transcript and
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would result in a 448bp product if spliced correctly. The region amplified by ARF3 and ARR3 spans exon 4 and exon

5 of the ARP3 transcript and would result in a 116 bp product if spliced correctly. PCR using primers (ARFR1)

flanking exon 1 and exon 12 revealed a 1.2kb product. However upon using the internal primers ARFR2 that flank

exon 5 and exon 8, it was revealed that the cDNA extracted from 293T cell line yielded a smaller product of about

200bp. To confirm the presence of aberrant splicing, both 1.2kb transcripts were cloned into a pGEM-T vector and

sequenced. The sequence confirmed the presence of aberrant splicing in the 293T cell line while the transcript from

the PLHC-1 cell line was spliced correctly. We found 3 different aberrant splicing phenotypes in the transcript from

the 293T cells. There were 2 cases of intron inclusion (intron 4 and intron 9), 1 case of exon skipping (exon 7) and

1 case of exon truncation through the use of a 5′ cryptic splice site within exon 5.

Site-directed Mutagenesis

Insertion of G triplets into intron 4 of the Fugu ARP3 gene was accomplished by PCR-based site-directed mutagenesis

using the PfuTurbo DNA Polymerease (Stratagene). The inserted sequence resembled the G1 and G2 triplets in

intron 2 of the human alpha globin gene [10]. Primers were diluted to 125 ng/µl and constructs to 50 ng/µl. The

primers designed to insert 1 pair of G-triplets were: CTGTTGGTGAGGACAgggtcgaggggCAACTCGCCCACCT-

GTTC (M2F), and GAACAGGTGGGCGAGTTGcccctcgacccTGTCCTCACCAACAG (M2R), where the inserted

sequences are indicated in lower case. This resulted in the construct we term M2F8. The PCR reaction was carried

out at a denaturing temperature of 95 ◦C for 30 sec, and 35 cycles of 95 ◦C for 30 sec, annealing at 55 ◦C for 1

min and extension at 68 ◦C for 20 min. The products were digested with DpnI at 37 ◦C for 1 hr to remove the

parental DNA template. The second pair of G-triplets was inserted into the M2F8 construct by a second round

of mutagenesis using the forward and reverse primers: GGGGCAACTCGCCCAgggccgggCCTGTTCTACCGGTG

(M5F) and CACCGGTAGAACAGGcccggcccTGGGCGAGTTGCCCC (M5R), resulting in the construct we term

M5F2 (Fig. 6). All mutated PCR products were subsequently transformed into E. coli and sequenced to confirm

the presence of the correct inserted sequence.
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Table 2. Splice site cutoffs and the sizes of sequences utilized.

Splice Mouse Human Fugu Ciona
Score Cutoffs 3’ss (6.99,11.53) (6.99,11.56) (7.04,11.29) (6.24,9.70)

Intron number 3’ss (20,912; 21,004) (25,257; 25,358) (35,449; 13,128) (16,510; 17,000)

Exon number 3’ss (23,920 ; 22,717) (26,457; 22,921) (39,747; 11,954 )

Score Cutoffs 5’ss (6.32,9.60) (6.32,9.48) (5.68,8.64) (5.74,9.47)

Intron number 5’ss (22,806; 22,776) (25,075; 24,918) (27,144; 27,269) (16,739; 7,093)

Exon number 5’ss (27,165 ; 19,665) (30,236; 21,613) (37,435; 20,023)

Weak and strong cutoffs for 5′ and 3′ splice sites in bits and the corresponding number of introns
and exons partitioned into weak and strong sets. The first number in the brackets is the number
of weak introns or exons, and the second number is the number of strong introns or exons, defined
relative to the upstream 5′ or downstream 3′ splice sites.

Introns were required to be longer than 60 bases, resulting in a total of 100,402 human, 91,691
mouse, 109,038 Fugu and 69,934 Ciona introns). For each species, the splice site cutoffs were used
to partition the introns into strong and weak 5′ss and strong and weak 3′ss introns. Strong and
weak cutoffs for splice sites are determined by the 75th and 25th percentile of scores respectively, as
described previously in [1]. The 5′ss background frequencies were obtained from sets of generated
decoys (9-mers with a GT in the 4th and 5th positions): A:0.25, C:0.20, G:0.25, T:0.28 for human
and mouse, A:0.25, C:0.25, G:0.24, T:0.26 for Fugu and A:0.32, C:0.14, G=0.18, T=0.35 for Ciona.
The 3′ss background frequencies were obtained similarly (23-mers with an AG in the 19th and 20th
positions): A:0.25, C:0.25, G:0.25, T:0.25 for human and mouse, A:0.25, C:0.25, G:0.25, T:0.25 for
Fugu and A:0.3, C:0.17, G:0.17, T:0.35 for Fugu. From 105,380 human, 95,880 mouse and 113,628
Fugu exons, we partitioned the dataset into strong and weak exons as described above. Exonic
regions are defined relative to the splice sites i.e. 5′ exon refers to the exonic region nearest to the
5′ss, and 3′ exon refers to the region nearest to the 3′ss.
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Table 3. Method of enumeration of non-overlapping occurrences of an oligonucleotide.

Sequence Pattern(s) Counts

GGGgcccGGGccc GGG 2

GGGgCCCGGGCCC GGG or CCC 4

GGGGCCcGGGccc GGG or GCC 3

AATCAAacaATCAAA AATCAA or ATCAAA 2

Consider sequences ggggcccgggccc and aatcaaacaatcaaa. Notice in the last two entries that we do
not count overlapping patterns.



Table 4. Differential enrichment of RESCUE-ESEs in exons flanked by introns of different lengths.

Human Human Human Human Fugu Fugu Fugu Fugu
5′ 5′ 3′ 3′ 5′ 5′ 3′ 3′

ESE S<M M<L S<M M<L S<M M<L S<M M<L
3B + + + + + − + −

3C NS NS − NS NS + + +
3E + NS + + NS − NS −

3F + + + + − − NS −

3H + NS + + − NS − NS
5A3G + + + + + − NS NS
5B3A + + NS + − − NS −

5C3D + + + + NS − NS −

5D + + NS NS NS NS NS NS
5E NS − NS − NS NS NS −

Significance of difference in mean enrichment (frequency observed − frequency expected) of ESEs
in exonic regions (+10 to +70 and −10 to−70) flanked by short (<125 bp) versus medium (125-1000
bp), and medium versus long (>1000bp) introns. + indicates significance (p <0.001) of enrichment
in the direction indicated (e.g. a + in the human 5′ S<M column indicates that human exons flanked
by short introns have fewer ESEs than exons flanked by medium introns) as measured by a Wilcoxon
rank-sum test. − indicates significance in the opposite direction. NS indicates non-significance.



Table 5. Domain conservation of U1 snRNP specific proteins.

Accession No. Protein Name Human Mouse Fugu
P08621 U1-70kD 1 RRM 1RRM No RRM

P09012 U1 A 2RRM Pro-rich 2RRM Pro-rich 2RRM

P09234 U1 C ZF Pro-rich ZF Pro-rich ZF

P08621 U1-70kD 104852 030810 124896

P09012 U1 A 077312 040518 128942

P09234 U1 C 124562 024217 120439

Swiss-Prot accession numbers, predicted domains, and thelast 6 digits of the Ensembl gene iden-
tifiers for human (ENSG00000), mouse (ENSMUSG00000) and Fugu (SINFRUG00000) are listed.



Table 6. Domain conservation of serine-arginine (SR) proteins.

Accession No. Protein Name Human Mouse Fugu
Q08170 SRP75 2RRM, RS 2 RRM, RS 2 RRM, RS

Q05519 p54/SFRS11 1RRM, RS 1RRM, RS 1RRM, RS

Q13247 SRp55 2RRM, RS 2RRM, RS 2RRM, RS

Q13243 SRp40 2RRM, RS 2RRM, RS 2RRM, RS

Q07955 ASF/SF2 2RRM, RS 2RRM, RS 2RRM, RS

Q16629 9G8 1RRM, RS, ZF 1RRM, RS, ZF 1RRM, RS, ZF

Q01130 SC35 1RRM,RS, 1RRM, RS 1RRM, RS

Q13242 SRp30c 2RRM, RS 2RRM, RS 2RRM, RS

AF057159 hTra2 1RRM, RS 1RRM, RS 1RRM, RS

P23152 SRp20 1RRM, RS 1RRM, RS 1RRM, RS

Q08170 SRP75 116350 028911 144119

Q05519 p54/SFRS11 116754 039971 124246

Q13247 SRp55 124193 016921 148668

Q13243 SRp40 100650 021134 125175

Q07955 ASF/SF2 136450 018379 129244

Q16629 9G8 115875 024097 136446

Q01130 SC35 161547 034120 152188

Q13242 SRp30c 111786 029538 137486

AF057159 hTra2 136527 022858 140787

P23152 SRp20 112081 034437 138994

Swiss-Prot accession numbers, predicted domains, and thelast 6 digits of the Ensembl gene iden-
tifiers for human (ENSG00000), mouse (ENSMUSG00000) and Fugu (SINFRUG00000) are listed.



Table 7. Domain conservation of heterogeneous (H) complex proteins.

Accession No. Protein Name Human Mouse Fugu
Q13151 hnRNP A0 2RRM 2RRM 2RRM

P09651 hnRNP A1 2RRM 2RRM 2RRM

P22626 hnRNP A2/B1 2RRM 2RRM No Ortholog

P51991 hnRNP A3 2RRM 2RRM 2RRM

P07910 hnRNP C1/C2 1RRM 1RRM 1RRM

Q14103 hnRNP D0 2RRM 2RRM 2RRM

NM 004966 hnRNP F 3RRM 3RRM No Ortholog

L22009 hnRNP H 3RRM 3RRM 2RRM

P26599 hnRNP I/PTB 4RRM 4RRM 3RRM

Q07244 hnRNP K 3KH 3KH 1KH

P14866 hnRNP L 3RRM 1RRM 2RRM

O43390 hnRNP R 3RRM 3RRM 3RRM

AL031668 hnRNP RALY 1RRM 1RRM No Ortholog *

P35637 hnRNP FUS/hnRNP P2 1RRM 1RRM 1RRM

B54857 NF-AT 90K 2DSRM 2DSRM 2DSRM

A54587 NF-AT 45K 25A synth 25A synth 25A synth

AF037488 GRY-RBP 3RRM 3RRM --

P43243 Matrin3 2RRM 2RRM 1RRM

O43684 hBUB3 WD40 WD40 WD40

Q15717 HuR 3RRM 3RRM 3RRM

Q92804 TAFII68 1RRM, ZF 1RRM, ZF 1RRM, ZF

P16991 YB1 CSD CSD CSD

P16989 DBPA CSD CSD No Ortholog

P08107 HSP70 HSP70 HSP70 No Ortholog *

P11142 HSP71 HSP71 HSP71 HSP71

Q13151 hnRNP A0 177733 007836 145410

P09651 hnRNP A1 135486 036021 146321

P22626 hnRNP A2/B1 122566 004980 No Ortholog

P51991 hnRNP A3 176825 047468 124772

P07910 hnRNPC1/C2 092199 004563 144808

Q14103 hnRNP D0 138668 000568 129026

NM 004966 hnRNP F 169813 042079 No Ortholog

L22009 hnRNP H 169045 007850 129688

P26599 hnRNP I/PTB 011304 006498 125066

Q07244 hnRNP K 165119 021546 135555

P14866 hnRNP L 104824 015165 136448

O43390 hnRNP R 125944 028666 151323

AL031668 hnRNP RALY 125970 027593 No Ortholog *

P35637 hnRNP FUS/hnRNP P2 089280 030795 125014

B54857 NF-AT 90K 129351 032178 144346

A54587 NF-AT 45K 143621 001016 133792

P43243 Matrin3 015479 037236 120558

O43684 hBUB3 154473 015688 151235

Q15717 HuR 066044 040028 135392

Q92804 TAFII68 172660 020680 152729

P16991 YB1 065978 028639 137733

P16989 DBPA 060138 030189 No Ortholog

P08107 HSP70 096469 007033 No Ortholog *

P11142 HSP71 109971 015656 141042

Swiss-Prot accession numbers, predicted domains, and the last 6 digits of the Ensembl gene identifiers for human

(ENSG00000), mouse (ENSMUSG00000) and Fugu (SINFRUG00000) are listed. Asterisks indicate genes having zebrafish

orthologs in Ensembl.



Table 8. Abbreviations for domain descriptions.

Domain Name Description Pfam Accession Number

25A synth 2’-5’-oligoadenylate synthase N-terminal region profile. --

AT hook AT hook motif PF02178

CSD ’Cold-shock’ DNA-binding domain PF00313

CPSFA CPSF A subunit region PF03178

DEAD DEAD/DEAH box helicase PF00270

DIM1 Mitosis protein DIM1 PF02966

DSRM Double-stranded RNA binding motif PF00035

EFG C Elongation factor G C-terminus PF00679

EFG IV Elongation factor G, domain IV PF03764

GYF GYF Domain PF02213

Hat HAT (Half-A-TPR) repeat PF02184

Helicase C Helicase conserved C-terminal domain PF00271

HSP70 Hsp70 protein PF00012

KH K homology domain PF00013

MIF4G Middle domain of eukaryotic initiation factor 4G domain PF02854

LRR Leucine Rich Repeat PF00560

Mov34 Mov34/MPN/PAD-1 family PF01398

Myb DNA binding Myb-like DNA-binding domain PF00249

NLS BP Bipartite nuclear localization signal --

NOP Putative snoRNA binding domain PF01798

Pro isomerase Cyclophilin type peptidyl-prolyl cis-trans isomerase PF00160

Pro-rich Proline Rich --

PWI PWI Domain PF01480

RNA pol Rpb1 R RNA polymerase Rpb1 C-terminal repeat PF05001

RIBOSOMAL L7A Ribosomal protein L7Ae/L30e/S12e/Gadd45 family PF01248

RRM RNA recognition motif PF00076

RS Arginine Serine rich domain --

SART 1 SART-1 family PF003343

Sec63 Sec63 domain PF02889

SKIP SNW SKIP/SNW domain PF02731

TPR TPR Domain PF00515

Tudor Tudor Domain PF00567

UCH Ubiquitin carboxyl-terminal hydrolase PF00443

WD40 WD domain, G-beta repeat PF00400

WW WW domain PF00397

ZF Zinc Finger domain PF04071



Supporting Figure legends

Fig. 6 Rescue of Fugu ARP3 intron 4 in human 293T cells. A. Mutants of intron 4 were
generated by insertion of G triples (see main text). B. RT-PCR of mRNA: Lane 1: PLHC-1
transfected with wildtype Fugu Arp3N1 (PLHC-1); Lane 2: 293T transfected with wildtype Fugu

Arp3N1(WT); Lane 3: 293T transfected with mutant containing a single G triple insert (M2F8);
Lane 4: 293T transfected with mutant containing two G triple inserts (M5F2).

Fig. 7 A. Classical Splice Signals (5’ss, branch, 3’ss: left to right column respectively) of Homo

Sapiens, Mus musculus, Danio rerio, Fugu rubripes and Ciona intestinalis. B. Distribution of
putative branch signals upstream of 3’ss in human, mouse and Fugu. Each point represents the
midpoint of a window of size 30 bp.

Fig. 8 Histograms of intron lengths (log10 bp). Distributions were modeled as mixtures of 2
normal distributions.

Fig. 9 Frequency difference plots of RESCUE-ESEs in human, mouse and Fugu exons.

Fig. 10 Frequency difference plots of RESCUE-ISEs in five chordates.

Fig. 11 Frequency difference plots of RESCUE-ESEs in human exons flanked on both sides by
introns of lengths <125 bp, 125 − 1000 bp, or > 1000 bp.

Fig. 12 Frequency difference plots of RESCUE-ISEs for human (GGG,CCC) and Fugu

(ACAC,GTGT) in introns of three length groups as indicated.

Fig. 13 A. Binned frequencies of the lengths of Fugu and mouse introns. 64,313 Fugu introns
and 74,908 mouse introns that are at least 2000 bases long were distributed into 50 bins. B. Binned
scores from the Linear Discriminant Analysis (LDA) for an independent test set of 32,156 Fugu

introns and 37,454 mouse introns (trained on independent training set of the same size; details in
Methods and supporting text). C. Combined scores (LDA + intron length) for the independent
test set of introns. 85% of Fugu introns the independent test set are classified as true Fugu introns,
and 88% of mouse introns from the independent test set are predicted to be true mouse introns.
Genes 1, 2 and 3 are the Fugu RCN1, HD and ARP3 gene. The location of scores for introns 1 to
5 of gene 1 (1.1-1.5), 1 to 7 of gene 2 (2.1-2.7) and 1 to 11 of gene 3 (3.1-3.11) with respect to the
overall distributions are indicated by lines. A minus sign (-) indicates intron retention, a plus sign
(+) indicates correct splicing and +/- indicates partial splicing of the corresponding Fugu introns
in trangenic mice or mice cell lines, evident from the literature or by our aexperimental analyses.
The table insert contains the corresponding intron lengths (bp) for the Fugu introns.

Fig. 14 Splicing Phenotype of Fugu Arp3N1 expressed in Human 293T includes (a) unspliced
introns 4 and 9 (b) truncated exon 5 (c) skipped exon 7.
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Chapter 3

Alternative Splicing In Human

Tissues

3.1 Abstract

Alternative pre-mRNA splicing (AS) is widely used to generate different protein isoforms in specific cell

or tissue types.  To compare AS events across human tissues, we analyzed the splicing patterns of

genomically-aligned ESTs derived from libraries of cDNAs from different tissues.  Controlling for

differences in EST coverage between tissues, we found that the brain and testis had the highest levels of

exon skipping.  The most pronounced differences between tissues were seen for the frequencies of

alternative 3' splice site and alternative 5' splice site usage, which were ~50% to 100% higher in the liver

than in any other human tissue studied. Quantization of differences in splice junction usage, the brain,

pancreas, liver, and the peripheral nervous system had the most distinctive patterns of AS.  Analysis of

available microarray expression data showed that the liver had the most divergent pattern of expression of

SR protein and hnRNP protein genes compared to the other human tissues studied, possibly contributing

to the unusually high frequency of alternative splice site usage seen in this tissue.  Sequence motifs

enriched in alternative exons expressed in the brain, testis and liver suggest specific splicing factors that

may be important in AS regulation in these tissues. This study distinguishes the human brain, testis and

liver as having unusually high levels of AS, highlights differences in the types of AS occurring commonly

in different tissues, and identifies candidate cis-regulatory elements and trans-factors likely to play

important roles in tissue-specific AS in human cells.
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3.2 Background

The differentiation of a small number of cells in the developing embryo to the hundreds of cell

and tissue types present in a human adult is associated with a multitude of changes in gene

expression [1-3].  In addition to many differences between tissues in transcriptional and

translational regulation of genes, alternative pre-mRNA splicing (AS) is also frequently used to

regulate gene expression and to generate tissue-specific mRNA and protein isoforms [4-7].

Between one-third and two-thirds of human genes are estimated to undergo AS [8-12] and the

disruption of specific AS events has been implicated in several human genetic diseases [13].  The

diverse and important biological roles of alternative splicing have led to significant interest in

understanding its regulation.

Insights into the regulation of AS have come predominantly from the molecular

dissection of individual genes (reviewed in [4] and [13]).  Prominent examples include the

tissue-specific splicing of the c-src N1 exon [14], cancer-associated splicing of the CD44 gene

[15] and the alternative splicing cascade involved in Drosophila melanogaster sex determination

[16].  Biochemical studies of these and other genes have described important classes of trans-

acting splicing regulatory factors, implicating members of the ubiquitously expressed SR protein

and heterogeneous nuclear ribonucleoprotein (hnRNP) families, and tissue-specific factors

including members of the CELF [17] and NOVA [18] families of proteins, as well as other

proteins and protein families, in control of specific splicing events.  A number of cis-regulatory

elements in exons or introns that play key regulatory roles have also been identified, using a

variety of methods including site-directed mutagenesis, SELEX and computational approaches

[19-23].  In addition, DNA microarrays and polymerase colony approaches have been developed

for higher throughput analysis of alternative mRNA isoforms [24-27] and a cross-
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linking/immunoprecipitation strategy (CLIP) has been developed for systematic detection of the

RNAs bound by a given splicing factor [28].  These new methods suggest a path towards

increasingly parallel experimental analysis of splicing regulation.

From another direction, the accumulation of large databases of cDNA and EST sequences

has enabled large-scale computational studies, which have assessed the scope of AS occurring in

the mammalian transcriptome [6, 9, 11, 29].  Other computational studies have analyzed the

tissue specificity of AS events and identified sets of exons and genes that exhibit tissue-biased

expression [30-32].  Yet a number of significant questions about tissue-specific alternative

splicing have not yet been comprehensively addressed.   Which tissues have the highest and

lowest proportions of alternative splicing?  Do tissues differ in their usage of different AS types,

such as exon skipping, alternative 5' splice site (5'ss) choice or alternative 3' splice site (3'ss)

choice?  Which tissues are most distinct from other tissues in the spectrum of alternative mRNA

isoforms they express?  And to what extent do expression levels of known splicing factors

explain AS patterns in different tissues?

Here, we describe an initial effort to answer these questions using a large-scale

computational analysis of ESTs derived from about two dozen human tissues, which were

aligned to the assembled human genome sequence to infer patterns of AS occurring in thousands

of human genes.  Our results distinguish specific tissues as having high levels and distinctive

patterns of AS and identify pronounced differences between the proportions of alternative 5'ss

and alternative 3'ss usage between tissues.  Candidate cis-regulatory elements and trans-factors

involved in tissue-specific AS are identified and discussed.
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3.3 Results and Discussion

3.3.1 Variation in the levels of AS occurring in different human tissues

Alternative splicing events are commonly distinguished in terms of whether mRNA isoforms

differ by inclusion/exclusion of an exon, in which case the involved exon is referred to as a

‘skipped exon’ (SE) or ‘cassette exon’, or whether isoforms differ in the usage of a 5'ss or 3'ss,

giving rise to alternative 5'ss exons (A5Es) or alternative 3'ss exons (A3Es), respectively

(depicted in Fig. 1). These descriptions are not necessarily mutually exclusive, e.g., an exon can

have both an alternative 5'ss and alternative 3'ss, or have an alternative 5'ss or 3'ss and also be

skipped in other isoforms.  A fourth type of alternative splicing, ‘intron retention’, in which two

isoforms differ by presence of an un-spliced intron in one transcript that is absent in the other,

was not considered in this analysis because of the difficulty in distinguishing true intron retention

events from contamination of the EST databases by pre-mRNA or genomic sequences.  The

presence of these and other artifacts in EST databases are important caveats to any analysis of

EST data.  Therefore, we employed stringent filters on the quality of EST to genomic alignments

used in this analysis, accepting only about one-fifth of all EST alignments obtained (see

Methods).

To determine whether differences occur in the proportions of these three types of AS

events between human tissues, we assessed the frequencies of genes containing SEs, A3Es or

A5Es for sixteen human tissues that had sufficiently high EST coverage.  Since the availability

of a larger number of ESTs derived from a gene increases the chance of observing alternative

isoforms of that gene, the proportion of AS observed in a tissue will tend to increase with

increasing EST coverage [11, 33].  Because the number of ESTs available in the dbEST database

differs quite substantially between human tissues (e.g, brain ~8-fold higher than heart), in order
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to compare the proportion of AS in different tissues in an unbiased way, we employed a

sampling strategy that ensured that all genes/tissues studied were represented by equal numbers

of ESTs.

It is important to point out that our analysis does not make use of the concept of a

canonical transcript for each gene because it is not clear that such a transcript could be chosen

objectively or that this concept is biologically meaningful.  Instead, AS events are defined only

through pairwise comparison of ESTs.

Our objective was to control for EST abundance differences between tissues while

retaining sufficient power to detect a significant fraction of AS events.  For each tissue we

considered genes which had at least 20 aligned EST sequences derived from human cDNA

libraries specific to that tissue (“tissue-derived” ESTs).  For each such gene, a random sample of

20 of these ESTs was chosen (without replacement) to represent the splicing of the given gene in

the given human tissue.  For the gene and tissue combinations included in this analysis, the

median number of EST sequences per gene was not dramatically different between tissues,

ranging from 25-35 (Table S1). The sampled ESTs for each gene were then compared to each

other to identify AS events occurring within the given tissue (Methods).  The random sampling

was repeated 20 times and the mean fraction of AS genes observed in these 20 trials was used to

assess the fraction of AS genes for each tissue (Fig. 1A).  Of course, different random subsets of

a relatively large pool will have less overlap in the specific ESTs chosen (and therefore in the

specific AS events detected) than for random subsets of a smaller pool of ESTs.  And clearly

increased numbers of ESTs give greater coverage of exons.  However, there is no reason that the

expected number of AS events detected per randomly sampled subset should depend on the size

of the pool the subset was chosen from.  While it is true that the error (standard deviation) of the

measured AS frequency per gene should be lower when restricting to genes with a larger
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minimum pool of ESTs, this restriction would not change the expected value.  Unfortunately, the

reduction in error of the AS frequency per gene is offset by an increase in the expected error of

the tissue-level AS frequency resulting from the use of fewer genes.  The inclusion of all genes

with at least 20 tissue-derived ESTs represents a reasonable tradeoff between these factors.

The human brain had the highest fraction of AS genes in this analysis (Fig. 1A), with

more than 40% of genes exhibiting one or more AS events, followed by the liver and testis.

Previous EST-based analyses have identified high proportions of splicing in human brain and

testis tissues [31, 32, 34].  These studies did not specifically control for the highly unequal

representation of ESTs from different human tissues.  Since larger numbers of ESTs increase the

chance of observing a larger fraction of the expressed isoforms of a gene, the number of

available ESTs has a direct impact on estimated proportions of AS, as seen previously in

analyses comparing the levels of AS in different organisms [33].  Thus, the results obtained in

this study confirm that the human brain and testis possess an unusually high level of AS, even in

the absence of an EST-abundance advantage over other tissues.  We also observe a high level of

AS in the human liver, a tissue with much lower EST coverage where higher levels of AS have

been previously reported in cancerous cells [35, 36].  The human muscle, uterus, breast, stomach

and pancreas had the lowest levels of AS genes in this analysis (< 25% of genes).  Lowering the

minimum EST count for inclusion in this analysis from 20 to 10 ESTs, and sampling 10 (out of ≥

10) ESTs to represent each gene in each tissue, did not alter the results qualitatively (data not

shown).

3.3.2 Differences in the levels of exon skipping in different tissues

Alternatively spliced genes in this analysis exhibited on average between one and two distinct

AS exons.  Analyzing the different types of AS events separately, we found that the human brain
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and testis had the highest levels of skipped exons (SEs), with > 20% of genes containing SEs

(Fig. 1B).  The high level of SEs observed in the brain is consistent with previous analyses [31,

32, 34].  At the other extreme, the human ovary, muscle, uterus and liver had the lowest levels of

SEs (~10% of genes).  

An example of a conserved exon skipping event observed in human and mouse brain is

shown in Fig. 2A for the human fragile X mental retardation syndrome-related (FXR1) gene [37,

38].  In this event, skipping of the exon alters the reading frame of the downstream exon,

presumably leading to production of a protein with an altered and truncated C-terminus.  The

exon sequence is perfectly conserved between the human and mouse genomes, as are the 5'ss and

3'ss sequences (Fig. 2A), suggesting that this AS event may play an important regulatory role

[39-41].

3.3.3 Differences in the levels of alternative splice site usage in different tissues

Analyzing the proportions of AS events involving the usage of alternative 5'ss or 3'ss revealed a

very different pattern (Fig. 1C,D).  Notably, the fraction of genes containing A3Es was more

than twice as high in the liver as in any other human tissue studied (Fig. 1D), and the level of

A5Es was also about 40-50% higher in the liver than in any other tissue (Fig. 1C). The tissue

with the second highest level of alternative splice site usage for both 5'ss and 3'ss was the brain.

A similar group of human tissues – muscle, uterus, breast, pancreas and stomach – had the

lowest  level of A5Es or A3Es (< 5% of genes in each category).  Thus, a picture emerges in

which certain human tissues such as the muscle, uterus, breast, pancreas and stomach have low

levels of AS of all types, while other tissues such as the brain and testis have relatively high

levels of AS of all types, and the liver has very high levels of alternative splice site use of both

the 5'ss and 3'ss, but exhibits only a low level of exon skipping.  To our knowledge, this study
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represents the first systematic analysis of the proportions of different types of AS events

occurring in different tissues.  Repeating the analyses by removing ESTs from disease-associated

tissue libraries, using available library classifications [42], gave qualitatively similar results

(Tables S2 and S3, and Fig. S1).  These data show that ESTs derive from diseased tissues show

modestly higher frequencies of exon-skipping, but the relative rankings of tissues remain similar.

The fraction of genes showing alternative 5' and 3' exons do not show significant differences.

From the set of genes with at least 20 human liver-derived ESTs, this analysis identified a

total of 114 genes with alternative 5'ss and/or 3'ss usage in the liver.  Those genes in this set

which were named, annotated and for which the consensus sequences of the alternative splice

sites were conserved in the orthologous mouse gene (see Methods) are listed in Table 1.  Clearly,

conservation of the splice sites alone is necessary, but not sufficient by itself, to imply

conservation of the AS event in the mouse genome.  Many essential liver metabolic and

detoxifying enzyme-encoding genes appear on this list, including enzymes involved in sugar

metabolism (e.g., ALDOB, IDH1), protein and amino acid metabolism (e.g., BHMT, CBP2,

TDO2, PAH, GATM), detoxification (e.g., GSTA3) or breakdown of drugs and toxins (e.g.,

CYP3A4, CYP2C8).

Sequences and splicing patterns for two of these genes for which orthologous mouse

exons/genes and transcripts could be identified – the genes BHMT and CYP2C8 - are shown in

detail in Fig. 2B,C.  In the event depicted for BHMT, the involved exons are highly conserved

between the human and mouse orthologs (Fig. 2B), consistent with the possibility that the

splicing event may play a (conserved) regulatory role.  This AS event preserves the reading

frame of downstream exons, so the two isoforms are both likely to produce functional proteins,

differing by the insertion/deletion of 23 amino acids.  In the event depicted for CYP2C8, usage of

an alternative 3'ss removes 71 nucleotides, shifting the reading frame and leading to a premature
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termination codon in the exon (Fig. 2C).  In this AS event, the shorter alternative transcript is a

potential substrate for nonsense-mediated decay [43, 44] and the AS event may be used to

regulate the level of functional mRNA/protein produced.

3.3.4 Differences in splicing factor expression between tissues

To explore the differences in splicing factor expression in different tissues, available mRNA

expression data was obtained from two different DNA microarray studies [45-47].  For this

trans-factor analysis, we obtained a list of 20 splicing factors of the SR, SR-related and hnRNP

protein families from proteomic analyses of the human spliceosome [75-77] - the specific genes

studied are listed in supplementary information.  The variation in splicing factor expression

between pairs of tissues was studied by computing the Pearson (product-moment) correlation

coefficient (r) between the 20-dimensional vectors of splicing factor expression values between

all pairs of 26 human tissues, with 10 additional tissues to the 16 previously studied (Fig. 3).  A

low value of r between a pair of tissues indicates a low degree of concordance in the relative

mRNA expression levels across this set of splicing factors, while a high value of r indicates

strong concordance.

While most of the tissues examined showed a very high degree of correlation in the

expression levels of the 20 splicing factors studied (typically with r > 0.75; Fig. 3), the human

adult liver was clearly an outlier, with low concordance in splicing factor expression to most

other tissues (typically r < 0.6 and often much lower).  The unusual splicing factor expression in

the human liver was seen consistently in data from two independent DNA microarray studies

using different probe sets (compare two halves of Fig. 3).  The low correlation observed between

liver and other tissues in splicing factor expression is statistically significant even relative to

arbitrary collections of 20 genes (Fig. S3).  Examining the relative levels of specific splicing
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factors in human adult liver versus other tissues, the relative level of SRp30c was consistently

higher in liver and the relative levels of SRp40, hnRNP A2/B2 and Srp54 were consistently

lower.  A well-established paradigm in the field of RNA splicing is that usage of alternative

splice sites is often controlled by the relative concentrations of specific SR proteins and hnRNP

proteins [48-51].  The functional antagonism between particular SR and hnRNP proteins is often

due to competition for binding of nearby sites on pre-mRNAs [48, 52, 53].  Therefore, it seems

likely that the unusual patterns of expression seen in the human adult liver for these families of

splicing factors may contribute to the high level of alternative splice site usage seen in this tissue.

It is also interesting that splicing factor expression in human fetal liver is highly concordant with

most other tissues, but has low concordance with adult liver (Fig. 3).  This observation suggests

that substantial changes in splicing factor expression may occur during human liver

development, presumably leading to a host of changes in the splicing patterns of human liver-

expressed genes.  Currently available EST data were insufficient to allow systematic analysis of

the patterns of AS in fetal liver relative to adult liver.

An important caveat to these results is that the DNA microarray data used in this analysis

measure mRNA expression levels rather than protein levels or activities.  The relation between

the amount of mRNA expressed from a gene and the concentration of the corresponding protein

has been examined previously in several studies in yeast as well as in human and mouse liver

[54-57].  These studies have generally found that mRNA expression levels correlate positively

with protein concentrations, but with fairly wide divergences seen for a significant fraction of

genes.
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3.3.5 Over-represented motifs in alternative exons in the human brain, testis and liver

The unusually high levels of alternative splicing seen in the human brain, testis and liver

prompted us to identify candidate tissue-specific splicing motifs in the AS exons expressed in

each of these tissues.  Using a procedure similar to  Brudno et al. [58],  sequence motifs 4-6

bases in length that were significantly enriched in exons skipped in AS genes expressed in the

human brain relative to constitutive exons expressed in the brain were identified.  These

sequences were then compared to each other and grouped into seven clusters, each of which

shared one or two common 4-base motifs (Table 2).  The motifs in cluster BR1 (CUCC, CCUC)

resemble the consensus binding site for the polypyrimidine tract-binding protein (PTB), which

acts as a repressor of splicing in many contexts [59-62].  A similar motif (CNCUCCUC) has

been identified in exons expressed specifically in the human brain [31].  The motifs in cluster

BR7 (containing UAGG) are similar to the high-affinity binding site UAGGG[A/U], identified

for the splicing repressor protein hnRNP A1 by systematic evolution of ligands by exponential

enrichment (SELEX) [63].    The consensus sequences for the remaining clusters, BR2-BR6

(GGGU, UGGG, GGGA, CUCA, UAGC, respectively), as well as BR7, all resembled motifs

identified in a screen for exonic splicing silencers (ESSs) in cultured human cells (Z. Wang and

C. B. B., unpublished data), suggesting that most or all of the motifs BR1-BR7 represent

sequences directly involved in mediating exon skipping.  For example, G-rich elements, which

are known to act as intronic splicing enhancers [64, 65], may behave as splicing silencing

elements in an exon sequence context.

A comparison of human testis-derived SEs to exons constitutively included in genes

expressed in the testis identified only a single cluster of sequences, TE1, which shared the

tetramer UAGG.  Enrichment of this motif, common to the brain-specific cluster BR7, suggests a
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role for regulation of exon skipping by hnRNP A1 – or a trans-factor with similar binding

preferences - in the testis.  

Alternative splice site usage gives rise to two types of exon segments – the ‘core’

segment common to both splice forms and the ‘extended’ portion that is present in only the

longer isoform.  Two clusters of sequence motifs enriched in the core sequences of alternative

5'ss exons expressed in liver relative to the core segments of A5Es resulting from alignments of

non-liver-derived ESTs were identified, LI1 and LI2.  Both are adenosine-rich, with consensus

tetramers AAAC and UAAA, respectively.  The former motif matches a candidate ESE motif

identified previously using the computational/experimental RESCUE-ESE approach (motif 3F

with consensus [AG]AA[AG]C) [20].  The enrichment of a probable ESE motif in exons

exhibiting alternative splice site usage in the liver is consistent with a model that such splicing

events are often controlled by the relative levels of SR proteins (which bind many ESEs) and

hnRNP proteins.  Insufficient data were available for the analysis of motifs in the extended

portions of alternative 5'ss exons (which tend to be significantly shorter than the core regions) or

for the analysis of alternative 3'ss exons.

3.3.6 A measure of dissimilarity between mRNA isoforms

To quantify the differences in splicing patterns between mRNAs or ESTs derived from a gene

locus, a new measure called the splice junction difference ratio (SJD) was developed.  For any

pair of mRNAs/ESTs that align to overlapping portions of the same genomic locus, the SJD is

defined as the proportion of splice junctions present in both transcripts that differ between them,

including only those splice junctions that occur in regions of overlap between the transcripts (see

Fig. 4).  The SJD varies between zero and one, with a value of zero for any pair of transcripts

that have identical splice junctions in the overlapping region (e.g., transcripts 2 and 5 in Fig. 4, or
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for two identical transcripts), and has a value of 1.0 for two transcripts whose splice junctions are

completely different in the regions where they overlap (e.g., transcripts 1 and 2 in Fig. 4).  For

instance, transcripts 2 and 3 in Fig. 4 differ in the 3'ss used in the second intron, yielding a SJD

value of 2/4 = 0.5, while transcripts 2 and 4 differ by skipping/inclusion of an alternative exon,

which affects a larger fraction of the introns in the two transcripts and therefore yields a higher

SJD value of 3/5 = 0.6.

The splice junction difference ratio can be generalized to compare the splicing patterns

between two sets of transcripts from a gene, e.g., to compare the splicing patterns of the sets of

ESTs derived from two different tissues.  In this case, the SJD is defined by counting the number

of splice junctions that differ between all pairs of transcripts (i, j), with transcript i coming from

set 1 (e.g., ESTs derived from transcripts expressed in the heart), and transcript j coming from set

2 (e.g., ESTs derived from transcripts in the lung), and dividing this number by the total number

of splice junctions in all pairs of transcripts compared, again considering only those splice

junctions that occur in regions of overlap between the transcript pairs considered.  Note that this

definition has the desirable property that pairs of transcripts that have larger numbers of

overlapping splice junctions contribute more to the total than transcript pairs that overlap less.

As an example of the splice junction difference between two sets of transcripts, consider the set

S1, consisting of transcripts (1, 2) from Fig. 4, and set S2, consisting of transcripts (3, 4) from

Fig. 4.  Using the notation introduced in Fig. 4, SJD(S1,S2) = d(S1,S2) / t(S1,S2) =

[d(1,3)+d(1,4)+d(2,3)+d(2,4)]/[t(1,3)+t(1,4)+t(2,3)+t(2,4)] = [3+4+2+3]/[3+4+4+5] = 12/16 =

0.75, reflecting a high level of dissimilarity between the isoforms in these sets, whereas the SJD

falls to 0.57 for the more similar sets S1 = transcripts (1,2) versus S3 = transcripts (2,3).  Note

that in cases where multiple similar/identical transcripts occur in a given set, the SJD measure

effectively weights the isoforms by their abundance, reflecting an average dissimilarity when
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comparing randomly chosen pairs of transcripts from the two tissues.  For example, the SJD

computed for the set S4 = (1,2,2,2,2), i.e. one transcript aligning as transcript 1 in Fig. 4 and four

transcripts aligning as transcript 2, and the set S5 = (2,2,2,2,3) is 23/95 = 0.24, substantially

lower than the SJD value for sets S1 versus S3 above, reflecting the higher fraction of identically

spliced transcripts between sets S4 and S5.

3.3.7 Comparison of splicing patterns between tissues

To globally compare patterns of splicing between two different human tissues, a tissue-level SJD

value was computed, by comparing the splicing patterns of ESTs from all genes for which at

least one EST was available from cDNA libraries representing both tissues.  The “inter-tissue”

SJD value is then defined as the ratio of the sum of d(SA,SB) values for all such genes, divided by

the sum of t(SA,SB) values for all of these genes, where SA and SB refer to the set of ESTs for a

gene from tissues A and B, respectively, and d(SA,SB) and t(SA,SB) are defined in terms of

comparison of all pairs of ESTs from the two sets as described above.  This analysis uses all

available ESTs for each gene in each tissue (rather than samples of a fixed size).  A large SJD

value between a pair of tissues indicates that mRNA isoforms of genes expressed in the two

tissues tend to be more dissimilar in their splicing patterns than is the case for two tissues with a

smaller inter-tissue SJD value.  This definition puts greater weight on those genes for which

more ESTs are available.

 Inter-tissue SJD values were then used to globally assess tissue-level differences in

alternative splicing.  A set of 25 human tissues for which at least 20,000 genomically aligned

ESTs were available was compiled for this comparison (see Methods) and the SJD values were

then computed between all pairs of tissues in this set (Fig. 5A).  A clustering of human tissues on

the basis of their inter-tissue SJD values (Fig. 5B) identified groups of tissues that cluster
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together very closely (e.g. the ovary/thyroid/breast cluster, the heart/lymph cluster and the

bone/b-cell cluster), while other tissues including the brain, pancreas, liver, peripheral nervous

system (PNS) and placenta occur as out-groups.  Calculating the mean SJD value for a given

tissue when compared to the remaining 24 tissues (Fig. 5C) identified a set of human tissues

including the ovary, thyroid, breast, heart, bone, b-cell, uterus, lymph and colon that have

‘generic’ splicing patterns which tend to be more similar to most other tissues.  As expected,

many of these tissues with generic splicing patterns overlap with the set of tissues that have low

levels of AS (Fig. 1).  On the other hand, another group of tissues including the human brain,

pancreas, liver and PNS, have highly ‘distinctive’ splicing patterns that differ from most other

tissues (Fig. 5C).  Many of these tissues were identified as having high proportions of AS in Fig.

1.  Taken together, these observations suggest that specific human tissues such as the brain, testis

and liver, make more extensive use of AS in gene regulation and that these tissues have also

diverged most from other tissues in the set of spliced isoforms they express.  Although we are

not aware of reliable, quantitative data on the relative abundance of different cell-types in these

different tissues, a greater diversity of cell-types in specific tissues is likely to contribute to

higher SJD values in these tissues.

3.4   Conclusions and Prospects

The systematic analysis of transcripts generated from the human genome is just beginning, but

promises to deepen our understanding of how changes in the program of gene expression

contribute to development and differentiation.  Here, we have observed pronounced differences

between human tissues in the set of alternative mRNA isoforms that they express, with the

human brain, testis and liver exhibiting the highest levels of AS.  Because our approach
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normalizes the EST coverage per gene in each tissue, there is higher confidence that these

differences accurately reflect differences in splicing patterns between tissues.  Since human

tissues are generally made up of a mixture of cell types, each of which may have its own unique

pattern of gene expression and splicing, it will be important in the future to develop methods for

systematic analysis of transcripts in different human cell types.

In our analysis of the levels of different AS types, the liver stood out as having

substantially higher proportions of alternative splice site usage than other human tissues, while

the brain and testis were found to have high proportions of exon skipping.  The splicing patterns

of liver- and brain-expressed genes were more likely to be distinct from the patterns seen in other

tissues (Fig. 5).  These differences are likely to result from tissue differences in splicing factor

expression (or activity).  Consistent with this hypothesis, the human liver was found to have a

discrepant expression profile for SR protein and hnRNP protein encoding genes when compared

across tissues (Fig. 3).  The characteristic pattern of gene expression of these factors is likely to

contribute to the higher proportion of alternative splice site usage seen in this tissue.  On the

other hand, our analysis of sequence motifs in alternative exons implicates the frequent

occurrence of a number of putative exonic splicing silencer motifs in AS genes expressed in the

human brain and testis, likely contributing to the high proportion of exon skipping observed in

these tissues.  The frequent use of exon skipping in gene regulation in the human brain and testis

suggests the presence of specific developmental or regulatory responses involving changes in

splicing factor expression or activity.  The pronounced tissue-level differences in alternative

splicing imply the importance of this regulatory mechanism in the biology of human tissues.
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3.5 Methods

Data and resources

Chromosome assemblies of the human genome (hg13) were obtained from public databases [66].

Transcript databases included approximately 94,000 human cDNA sequences obtained from

GenBank (release 134.0, gbpri and gbhtc categories), and approximately 5 million human

expressed sequence tags (ESTs) from dbEST (repository 02202003).  Human ESTs were

designated according to their cDNA library source (in total about 800) into different tissue types.

Pertinent information about cDNA libraries and the corresponding human tissue or cell line was

extracted from dbEST and subsequently integrated with library information retrieved from the

mammalian gene collection initiative (MGC) [67], the integrated molecular analysis of gene

expression consortium (IMAGE) [68] and the cancer genome anatomy project (CGAP) [69].

Library information obtained from MGC, IMAGE and CGAP is provided as supplementary

material in Table S4 at http://genes.mit.edu/burgelab/Supplementary/yeo_holste04/ as additional

data file 4.

Genome annotation by spliced transcript alignments

The GENOA genome annotation script [70] was used to align spliced cDNA and EST sequences to

the human genome.  GENOA uses BLASTN to detect significant blocks of identity between repeat-

masked cDNA sequences and genomic DNA, and then aligns cDNAs to the genomic loci

identified by BLASTN using the spliced alignment algorithm MRNAVSGEN [70].  This algorithm is

similar in concept to SIM4 [71] but was developed specifically to align high quality cDNAs rather

than ESTs and thus requires higher alignment quality (at least ~93% identity) and consensus

terminal dinucleotides at the ends of all introns (i.e. GT..AG or GC..AG).  EST sequences were



136

aligned using SIM4 [71] to those genomic regions which had aligned cDNAs.  Stringent

alignment criteria were imposed: (1) ESTs were required to overlap cDNAs (so all of the genes

studied were supported by at least one cDNA:genomic alignment); (2) the first and last aligned

segments of ESTs were required to be at least 30 nucleotides in length, with 90% sequence

identity; and (3) the entire EST sequence alignment was required to extend over at least 90% of

the length of the EST with at least 90% sequence identity.

In total, GENOA aligned about 85,900 human cDNAs and  about 890,300 ESTs to the

human genome.  The relatively low fraction of ESTs aligned (~18%) reflects the stringent

alignment quality criteria that were imposed in order to be as confident as possible in the inferred

splicing patterns.  The aligned sequences resulted in about 17,800 gene regions with more than 1

transcript aligned that exhibited multi-exon structure.  Of these, ~60% exhibited evidence of

alternative splicing of internal exons.  Our analysis did not examine differences in 3'-terminal

and 5'-terminal exons, inclusion of which is frequently dictated by alternative polyadenylation or

transcription start sites and therefore does not represent ‘pure’ AS [72, 73].  The EST alignments

were then used to categorize all internal exons as: constitutive exons, alternative 3'ss exons

(A3E), alternative 5'ss exons (A5E), skipped exons (SE), multiply alternatively spliced exons

(e.g., exons that exhibited both skipping and alternative 5'ss usage), and exons that contained

retained introns.  An internal exon present in at least one transcript was identified as an SE if it

was precisely skipped in one or more other transcripts, such that the boundaries of both the 5'

and 3' flanking exons were the same in the transcripts that included and skipped the exon (e.g.,

exon E3 in Fig. 1).  Similarly, an internal exon present in at least one transcript was identified as

an A3E (A5E) if at least one other transcript contained an exon differing in length by the use of

an alternative 3'ss (5'ss).  The ‘core’ of an A3E (A5E) is defined as the shortest exon segment

common to transcripts used to infer the A3E (A5E) event.  The extension of an A3E (A5E) is the
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exonic segment added to the core by the alternative 3'ss (5'ss).  Pairs of inferred A3Es or A5Es

differing by fewer than 6 nucleotides were excluded from further analysis, as in [9], because of

the possibility that such small differences might sometimes result from EST sequencing or

alignment errors.  As the frequency of insertion-deletions errors greater than 3 bases in ESTs is

vanishingly small (E. Birney, personal communication), a 6-base cutoff should exclude the vast

majority of such errors.  Alternatively spliced exons/genes identified in specific tissues are

available for download from the GENOA web site [70].

Quantifying splice junction differences between alternative mRNA isoforms

To quantify the difference in splicing patterns between mRNAs or ESTs derived from a gene

locus, the splice junction difference ratio (SJD) was calculated.  For any pair of mRNAs/ESTs

that have been aligned to overlapping portions a genomic locus, the SJD is defined as the

fraction of the splice junctions that occur in overlapping portions of the two transcripts that differ

in one or both splice sites.  A sample calculation is given in Fig. 4.  The SJD measure was

calculated by taking the ratio of the number of “valid” splice junctions that differ between two

sequences over the total number of splice junctions, when comparing a pair of ESTs across all

splice junctions present in overlapping portions of the two transcripts.  A splice junction was

considered valid if: (1) the 5'ss and the 3'ss satisfied either the GT..AG or the GC..AG

dinucleotide sequence at exon-intron junctions, and (2) if the splice junction was observed at

least twice in different transcripts.  The SJD measure can be generalized from a single

overlapping EST pair to two groups of overlapping ESTs.  When comparing two groups of EST

sequences, the SJD was computed by first calculating the total number of different valid splice

junctions for every compared pair of ESTs, and then dividing by the total number of splice

junctions for every pair of ESTs.   
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Identification of candidate splicing regulatory motifs

Over-represented sequence motifs (k-mers) were identified by comparing the number of

occurrences of k-mers (for k in the range of 4 to 6 nucleotides) in a test set of alternative exons

versus a control set.  In this analysis, monomeric tandem repeats (e.g., poly-A sequences) were

excluded.  The enrichment score of candidate k-mers in the test set versus the control set was

evaluated by computing c2 (chi-squared) values with a Yates correction term [74], using an

approach similar in spirit to that described by Brudno et al. [58].  We randomly sampled 500

subsets of the same size as the test set from the control set.  The enrichment scores for k-mers

over-represented in the sampled subset versus the remainder of the control set were computed as

above.  The estimated P-value for observing the given enrichment score (c2 value) associated

with an over-represented sequence motif of length k was defined as the fraction of subsets that

contained any k-mer with enrichment score (c2 -value) higher than the tested motif.  Correcting

for multiple tests is not required since the P-value is defined relative to the most enriched k-mer

for each sampled set.  For the set of skipped exons from human brain and testis-derived EST

sequences, the test sets comprised 1,265 and 517 exons skipped in brain and testis, respectively,

and the control sets comprised 12,527 and 8,634 exons constitutively included in respectively

human brain and testis-derived ESTs.  Candidate sequence motifs of skipped exons from brain

and testis-derived ESTs with associated P-values less than 0.002 were retained.  For the set of

A5E and A3E events from human liver-derived EST sequences, the test set comprised 44 A3Es

and 45 A5Es, and the control set comprised 1,619 A3Es and 1,481 A5Es identified using ESTs

from all tissues other than liver.  In this analysis, A3Es and A5Es with extension sequences of

less than 25 bases were excluded from and sequence longer than 150 bases were truncated to 150

bases, by retaining the exon sequence segment closest to the internal alternative splice junction.
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Over-represented sequence motifs of A3Es and A5Es from liver-derived EST sequences with

associated P-values less than 0.01 were retained.

Gene expression analysis of trans-acting splicing factors

Serine-arginine (SR), SR-related proteins, and heterogeneous nuclear ribonucleoproteins

(hnRNPs) were derived from published proteomic analyses of the spliceosome [75-77].

Expression values for these genes were obtained from the “gene expression atlas” using the HG-

U95A DNA microarray [45] and from a similar set of expression data using the HG-U133A

DNA microarray [47].  Altogether twenty splicing factors, ASF/SF2, SRm300, SC35, SRp40,

SRp55, SRp30c, 9G8, SRp54, SFRS10, SRp20, hnRNPs A1, A2/B2, C, D, G, H1, K, L, M, and

RALY, were studied in 26 different tissues present in both microarray experiments (see Figure

5).  The data from each gene chip - HG-U95A and HG-U133A - were analyzed separately.  The

average difference (AD) value of each probe was used as the indicator of expression level. In

analyzing these microarray data, AD values smaller than 20 were standardized to 20, as

performed in [45]. When two or more probes mapped to a single gene, the values from those

probes were averaged.  The Pearson correlation coefficient between the 20-dimensional vectors

for all tissue pairs were calculated.

List of abbreviations

AS, alternative splicing or alternatively spliced; 5'ss, 5' splice site; 3'ss, 3' splice site; cDNA,

complementary DNA; EST, expressed sequence tag; SJD, splice junction difference; SE, skipped

exon; A5E, alternative 5'ss exon; A3E, alternative 3'ss exon; SR, serine-arginine; hnRNP,

heterogeneous nuclear ribonucleoprotein.
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Figure legends

Figure 1.  Levels of alternative splicing in sixteen human tissues with moderate or high EST

sequence coverage.  Horizontal bars show the average fraction (and estimated standard

deviation) of alternatively spliced (AS) genes of each splice type for random samplings of N=20

ESTs per gene from each gene with ≥ 20 aligned EST sequences derived from a given human

tissue.  (A) Fraction of AS genes containing skipped exons, alternative 3'ss exons or alternative

5'ss exons;  (B) fraction of AS genes containing skipped exons; (C) fraction of AS genes

containing alternative 3'ss exons; and (D) fraction of AS genes containing alternative 5'ss exons.

Figure 2.  Human tissue specific alternatively spliced genes.  (A) Human fragile X mental

retardation syndrome-related (FXR1) gene splicing detected in brain-derived EST sequences.

FXR1 exhibited two alternative mRNA isoforms differing by skipping/inclusion of exon E16.

Exclusion of E16 creates a shift in the reading-frame predicted to result in an altered and shorter

C-terminus.  The exon-skipping event is conserved in the mouse ortholog of the human FXR1

gene, and both isoforms were detected in ESTs derived from the mouse brain.  (B) Human

betaine-homocysteine S-methyltransferase (BHMT) gene splicing detected in liver-derived ESTs.

BHMT exhibited two alternative isoforms differing by an alternative 5'ss exon usage in exon E4.

Sequence comparisons indicated that the exon and splice site sequences involved in both

alternative 5'ss exon events are conserved in the mouse ortholog of the human BHMT gene.  (C)

Human cytochrome P450 2C8 (CYP2C8) gene splicing.  CYP2C8 exhibited two alternative

mRNA isoforms due to an alternative 3'ss in exon E4 (detected in ESTs derived from several

tissues), where the exclusion of a 71 bases sequence created a premature termination codon in
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exon E4b.  Exons and splice sites involved in the AS event are conserved in the mouse ortholog

of CYP2C8.

Figure 3.  Correlation of mRNA expression levels of 20 known splicing factors across 26 human

tissues (lower diagonal: Affymetrix HU-133A DNA microarray experiment [47]; upper diagonal:

Affymetrix HU-95A DNA microarray experiment [45]); splicing factors listed in supplementary

Table S5.  Colored squares represent correlation coefficients of the mRNA expression patterns of

20 in each pair of tissues (see scale at top of figure).

Figure 4.  Computation of the splice junction difference ratio (SJD).  The SJD value for a pair of

transcripts is computed as the number of splice junctions in each transcript that are not

represented in the other transcript, divided by the total number of splice junctions in the two

transcripts, in both cases considering only those splice junctions that occur in portions of the two

transcripts that overlap.  SJD value calculations for combinations of the transcripts listed above

are also shown.

Figure 5.  Comparison of alternative mRNA isoforms across twenty five human tissues.  (A)

Color-encoded representation of SJD values between pairs of tissues.  (B) Hierarchical clustering

of SJD values using average-linkage clustering.  Groups of tissues in clusters with short branch

lengths (e.g. thyroid/ovary, b-cell/bone) have highly similar patterns of AS.  (C) Mean SJD

values  (versus other 24 tissues) for each tissue.
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Table 1.  Human genes expressed in the liver with alternative 3'ss (A3E) or alternative 5'ss exons (A5E).

Examples of human AS genes found to exhibit A3E and/or A5E splicing with both isoforms detected in liver-

derived ESTs.  AS types are listed in the first column, followed by the last six digits of the Ensembl gene number

(ENSG00000#), the gene name and alternative exon numbers.  The last two columns list expression levels in human

liver and mouse liver, respectively, expressed in terms of the fold-change relative to the median expression level in

other tissues (from the DNA microarray data of [45]).

Type Ensembl 
gene ID

Gene name                                                                          Exon 
numbers

Fold-change 
above median 
expression,   
HG-U95A

Fold-change 
above median 
expression,    
MG-U74A

A5E;A3E 091513 Serotransferrin Precursor, TF 8,9; 4 100 100
A5E;A3E 115414 Fibronectin Precursor, FN1 36; 31 10 -
A5E;A3E 117601 Antithrombin-III Precursor, SERPINC1 5; 4 100 100
A5E;A3E 136872 Fructose-Bisphosphate Aldolase, ALDOB 3,8; 4 100 10
A5E;A3E 140833 Haptoglobin-Related Protein Precursor, HPR 3 100 10
A5E;A3E 151790 Tryptophan 2,3-Dioxygenase, TDO2 3,5; 4 10 100
A5E;A3E 171759 Phenylalanine-4-Hydroxylase, PAH 6; 4,10 - 100
A5E 047457 Ceruloplasmin Precursor, CP 14,16 3 -
A5E 055957 Inter-Alpha-Trypsin Inhibitor Heavy Chain H1 Precursor, ITIH1 21 100 10
A5E 111275 Aldehyde Dehydrogenase, ALDH2 12 3 3
A5E 132386 Pigment Epithelium-derived Factor Precursor, SERPINF1 4 10 10
A5E 138356 Aldehyde Oxidase, AOX1 27,29 3 3
A5E 138413 Isocitrate Dehydrogenase, IDH1 3 1 -
A5E 145692 Betaine-Homocysteine S-Methyltransferase, BHMT 4 10 100
A5E 160868 Cytochrome P450, CYP3A4 5 10 10
A5E 171766 Glycine Amidinotransferase, GATM 8 3 3
A3E 080618 Carboxypeptidase, CBP2 10 - -
A3E 080824 Heat Shock Protein HSP 90-Alpha, HSPCA 8 - -
A3E 096087 Glutathione S-Transferase, GSTA2 4,6 10 10
A3E 106927 Protein Precursor, AMBP 5,9 100 100
A3E 110958 Telomerase-Binding Protein P23, TEBP 5 <1 1
A3E 134240 Hydroxymethylglutaryl-COA Synthase, HMGCS2 8 10 -
A3E 138115 Cytochrome P450, CYP2C8 4 100 10
A3E 145192 Alpha-2-HS-Glycoprotein Precursor, AHSG 6 100 100
A3E 163631 Serum Albumin Precursor, ALB 9 100 100
A3E 171557 Fibrinogen Gamma Chain Precursor, FGG 4 100 100
A3E 174156 Glutathione S-Transferase, GSTA3 4,6 10 10
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Table 2. Sequence motifs enriched in skipped exons and alternative 5'ss exons.  Sequence motifs of length 4-6
bases significantly over-represented (P < 0.002) in SEs relative to constitutively spliced exons from brain or testis-
derived ESTs are shown in the top and middle part, followed by the number of SE occurrences in these tissues.
Sequence motifs are grouped/aligned by similarity, and shared tetramers are shown in bold and listed in the last
column, followed by the fraction of SEs that contain the given tetramer.  Sequence motifs significantly over-
represented (P < 0.01) in core alternative 5'ss exons derived from human liver-derived ESTs are shown at the
bottom part, followed by number of A5E occurrences and the fractions that contain the given tetramer.  Statistical
significance was evaluated as described in Methods.

AS type /Tissue 
(motif name)

Oligo-
nucleotides

Occurrences Consensus   
(% of exon 
containing)

     CUCCUG 169
     CUCCU 323
     CUCCC 264
     CUCC 945
    CCUCCC 137
    CCUCC 363
    CCUC 1021
   GCCUCC 136
   GCCUC 375
   GCCUCA 122
  GGCCUC 118
  UGCCUC 108
     GGGUU 97
     GGGU 411
    AGGGU 116
    UGGGA 324
    UGGG 948
   CUGGG 426
  CCUGGG 171
     GGGAUU 58
     GGGAU 176
     GGGA 840
    CUCA 925
    CUCAC 206
  GCCUCA 122
  GGCUCA 102
   GCUCAC 79
     CUCAGC 126
    UAGC 269
    UAGCU 106
   GUAGC 96
   GUAGCU 51
  AGUAGC 47
    UAGCUG 54
    UAGG 186
   UUAGG 63
   UUAGGG 24
    UAGG 99
   UUAGG 33
    AAAC 42
   AAAAC 18
   UAAA 29
   UAAACC 5

SE/Brain (BR1)

CUCC (45.3)

CCUC (41.0)

SE/Brain (BR2) GGGU (25.6)

SE/Brain (BR3) UGGG (47.2)

SE/Brain (BR4) GGGA (45.5)

SE/Brain (BR5) CUCA (46.5)

SE/Brain (BR6) UAGC (18.0)

SE/Brain (BR7) UAGG (13.8)

Core A5E/ Liver (LI2) UAAA (40.0)

SE/Testis (TE1) UAGG (16.6)

Core A5E/ Liver (LI1) AAAC (53.3)
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Figure S1. Sampling 10 ESTs from gene regions with at least 15 ESTs aligned the region.  ESTs

are derived from strictly normal cDNA libraries.



Figure S2.  The average length in bases of ESTs stringently aligned to gene regions
across tissues.   Error bars are 1 standard deviation.



Distribution of mean correlation coefficients for random sets of genes. For each

iteration (total of 1000 iterations), we selected 20 random genes and computed

the correlation coefficient between the expression levels in 26 different tissues as

in Figure 3 for the U95A chip (A) and the U133A chip (B).  The figure shows the

distribution of the average correlation coefficient for each tissue. The arrow

indicates the mean value. The dashed vertical line shows the mean correlation

coefficient obtained in Figure 3 for the liver tissue. The p-value above each

subplot shows the proportion of values that were less than the observed value for

the liver (total number of coefficients in  the distribution = 1000 iterations x 26

tissues).



Tissues Mean Median Num. genes Tissues Mean Median Num. genes
kidney 3.69 2 6115 kidney 42.5 36 20
ovary 3.57 2 4771 ovary 38.82 35 33
breast 4.29 2 5877 breast 42.98 40 58
uterus 4.89 2 6581 uterus 44.01 38 101
testis 4.29 2 7890 testis 45.95 39 64

prostate 4.04 2 5466 prostate 46.82 36 57
colon 5.52 3 7343 colon 44.56 38 164

eye_retina 5.13 2 6995 eye_retina 47.7 39 134
lung 6.72 3 7672 lung 51.16 42 276
skin 5.92 3 6176 skin 52.11 42 178

stomach 7.42 3 6181 stomach 54.6 43 275
brain 10.18 4 10437 brain 57.73 46 797

placenta 6.82 3 6727 placenta 70.31 41 212
muscle 3.89 2 5243 muscle 74.29 51 56

pancreas 7.57 3 6658 pancreas 74.93 47 267
liver 4.4 2 4326 liver 81.44 50 72

Tissues Mean Median Num. genes Tissues Mean Median Num. genes
kidney 28.16 25 82 kidney 47.5 49 4
ovary 29.01 25 87 ovary 45.17 45 12
breast 30.58 26 158 breast 48.13 48 23
uterus 31.56 26 252 uterus 47.83 47 36
testis 32.49 27 161 testis 48.15 48 20

prostate 33.15 28 140 prostate 47.69 47 13
colon 33.36 28 357 colon 47.52 46 54

eye_retina 34.25 27 307 eye_retina 47.21 46 43
lung 36.8 29 582 lung 47.96 46 102
skin 37.18 29 374 skin 48 48 62

stomach 39.84 30 531 stomach 47.87 48 100
brain 42.7 31 1431 brain 48.3 48 260

placenta 47.99 30 405 placenta 47.38 47 60
muscle 49.42 30 110 muscle 48.14 50 14

pancreas 51.02 31 502 pancreas 48.31 47 91
liver 60.01 35 114 liver 50.29 50 17

Table S1. Mean and median number of ESTs per gene, and the total number of genes inferred at different minimum number of ESTs required.

Genes with >=1 EST per tissue

Genes with >=20 EST per tissue

Genes with >=30 ESTs per tissue

Genes with >=40 & <60 ESTs per tissue



Normal 
tissues

Average 
number of 

genes    

Average 
number of AS 

genes

Average 
number of 
genes with 

skipped exons

Average 
number of 
genes with 
alternative 
5'ss exons

Average 
number of 
genes with 
alternative 
3'ss exons

kidney 75.9 11.9 8.1 2.1 2.0
pancreas 288.7 32.1 21.3 4.5 8.8
testis 189.7 44.7 34.1 6.8 8.0
eye-retina 267.0 34.9 19.5 8.7 9.0
stomach 734.6 90.8 62.0 12.6 24.2
brain 1635.8 423.3 272.9 102.6 108.7
placenta 409.4 59.1 36.8 14.3 14.4
breast 173.7 15.9 12.1 2.5 2.6
muscle 177.1 15.6 12.5 1.5 3.5
uterus 71.3 4.2 2.2 2.0 0.0
liver 91.8 26.3 5.6 13.3 13.6
lung 430.7 62.9 41.1 11.6 16.1

Table S2. The average total number of genes,  AS genes, genes containing skipped, 
exons, genes containing alternative 5'ss or 3'ss exons.   Splicing patterns were inferred 
utilizing 10 ESTs from genes with at least 15 ESTs from a particular normal tissue cDNA 
library.



AS event Normal tissue Disease-associated 
tissue Normal and disease

ASG (CSG) ASG (CSG) ASG (CSG)
SE 195 (1201) 275 (1115) 261 (1128)
A5E 134 (1261) 119 (1271) 147 (1242)
A3E 124 (1271) 107 (1266) 107 (1282)
ASG 382 (1013) 435 (947) 435 (954)

AS event Normal tissue Disease-associated 
tissue Normal and disease

ASG / (CSG+ASG) ASG / (CSG+ASG) ASG / (CSG+ASG)
SE 14% 20% 19%
A5E 10% 9% 11%
A3E 9% 9% 8%
ASG 27% 32% 31%

Table S3. The number of alternatively spliced genes (ASGs) and constitutively spliced genes (CSGs), genes 
containing skipped exons (SEs), alternative 5'ss (A5E), and alternative 3'ss exons.  Splicing patterns were inferred by
 using 16 ESTs per gene from normal cDNA libraries, 16 ESTs per gene from diseased cDNA libraries, 
and 8 ESTs from normal and 8 ESTs from diseased cDNA libraries.  ESTs from the 16 tissue libraries similar to that 
in Figure 1 were combined in this analysis.  The fraction of genes containing SEs using ESTs from normal tissue 
libraries was significantly smaller (p <1E-5) by a chi-square test (with Yates correction), as compared to using
ESTs from disease associated libraries.



Table S5.  Human splicing factors of SR, SR-related and hnRNP protein families.  The last six digits

of the Ensembl gene number (ENSG00000#) are  in the first column, followed by the gene name and

corresponding Affymetrix DNA microarray HG-95A and HG-133A probe identification numbers..

Ensembl ID Splicing factor HG-95A probe 
ID

HG-133A probe 
ID

136450 ASF/SF2 36098_at 211784_s_at
167978 SRm300 32761_at 207435_s_at
161547 SC35 36111_s_at 200753_x_at
100650 SRp40 40453_s_at 212266_s_at
124193 SRp55 35808_at 208804_s_at
111786 SRp30c 32573_at 201698_s_at
115875 9G8 32165_at 213649_at
116754 Srp54 32183_at 200685_at
136527 SFRS10 140_s_at 210180_s_at
112081 SRp20 351_f_at 208673_s_at
135486 hnRNP A1 31463_s_at 213356_x_at
122566 hnRNP A2/B2 36654_s_at 205292_s_at
092199 hnRNP C 32408_s_at 200751_s_at
138669 hnRNP D 38016_at 2000073_s_at
147274 hnRNP G 39731_at 213762_x_at
169045 hnRNP H1 41292_at 213472_at
165119 hnRNP K 39415_at 200775_s_at
104824 hnRNP L 35201_at 202072_at
099783 hnRNP M 37717_at 2000072_s_at
125970 hnRNP RALY 36125_s_at 201271_s_at



Yeo et al.

161

Chapter 4

Prediction of alternative exons

4.1 Predictive identification of alternative splicing events conserved in

human and mouse

4.1.1 Abstract

Alternative pre-messenger RNA splicing affects a majority of human genes and plays important

roles in development and disease.  Alternative splicing (AS) events conserved since the

divergence of human and mouse are likely of primary biological importance, but relatively few

such events are known.  Here we describe sequence features that distinguish exons subject to

evolutionarily conserved AS, which we call ‘alternative-conserved exons’ (ACEs), from other

orthologous human/mouse exons and integrate these features into an exon classification

algorithm, ACEScan.  Genome-wide analysis of annotated orthologous human-mouse exon pairs

identified ~2,000 predicted ACEs.  Alternative splicing was verified in both human and mouse

tissues using an RT-PCR-sequencing protocol for 21 of 30 (70%) predicted ACEs tested,

supporting the validity of a majority of ACEScan predictions.  By contrast, AS was observed in

mouse tissues for only 2 out of 15 (13%) tested exons that had EST or cDNA evidence of AS in

human but were not predicted ACEs, and was never observed for eleven negative control exons
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in human or mouse tissues.  Predicted ACEs were much more likely to preserve reading frame,

less likely to disrupt protein domains than other AS events, and were enriched in genes expressed

in the brain and in genes involved in transcriptional regulation, RNA processing and

development.  Our results also imply that the vast majority of AS events represented in the

human EST database are not conserved in mouse.

4.1.2 Introduction

The processing of human primary transcripts to produce the messenger RNAs (mRNAs)

that will direct protein synthesis is often variable, producing multiple alternatively spliced (AS)

mRNA products, most commonly by alternative inclusion or exclusion (‘skipping’) of individual

exons (1-3).  Alternative pre-mRNA splicing plays a major role in expanding protein diversity

and regulating gene expression in higher eukaryotes (4, 5).  Regulated AS is crucial in fruit fly

development (3) and in the physiology of the heart, skeletal muscle, brain and other tissues, and

mis-regulation of AS is associated with human disease (6-8).

Expressed sequence tag (EST) and cDNA sequence databases provide a rich source of

information about splicing events occurring in the human and mouse transcriptomes.

Considering the set of human ESTs and cDNAs which can be reliably aligned to a human gene

locus overlapping a particular exon, this set can be subdivided into those transcripts which

include and those which exclude or ‘skip’ the exon in question.  Here, ‘skipping’ of an exon

refers to the situation where a transcript aligns consecutively to an upstream exon and a

downstream exon of the gene in question, omitting the given exon.  This consideration can be

applied to all of the exons in a human gene, and an analogous subdivision can be made of the

mouse transcripts that align to exons of the orthologous mouse gene.   Each orthologous
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human/mouse exon pair can then be assigned to one of four categories, SH,m, Sh,M, SH,M, or Sh,m,

depending on whether exon skipping has been observed only in human transcripts (SH,m), only in

mouse (Sh,M), in both human and mouse (SH,M), or not observed in either species (Sh,m).

Using publicly available EST databases totaling over 5 million human and over 3 million

mouse ESTs, and databases of ~94,000 and ~91,600 human and mouse cDNAs respectively,

thousands of alternative exons can be inferred in each species.  However, the overlap between

these sets is relatively small, i.e., for only about 240 (~ 1 in 18) of the ~ 4,500 conserved human-

mouse exons observed to be skipped in human was transcript evidence found supporting

alternative usage (skipping) of the orthologous mouse exon, as discussed below (9-11).  This

observation raises the question of how many of the AS events observable in the human

transcriptome are evolutionarily conserved, and therefore presumably contribute to organismal

fitness, and how many are aberrant, disease- or allele-specific, or highly lineage-restricted

events, which may or may not affect fitness.  Although study of the latter types of events may

lead to important insights and applications, a significant fraction of these events may constitute

biochemical ‘noise’ or transient evolutionary fluctuations.  On the other hand, conservation of a

specific pattern of AS over the ~90 million years since divergence of the mouse and human

lineages provides strong evidence of biological function.  Therefore, defining the set of AS

events conserved between human and mouse is of primary interest in efforts to understand the

biological importance of splicing regulation.

Alternative inclusion/exclusion of exons is known to be influenced by a number of

factors, such as intron length, exon length, splice site strength and pre-mRNA secondary

structure (1, 3, 12).  Certain cis-regulatory elements, including exonic and intronic splicing

enhancers (ESEs and ISEs, respectively), as well as exonic and intronic splicing silencers (ESSs
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and ISSs, respectively) can also control exon skipping by recruiting trans-acting splicing factors

(4, 13).  Computational studies have identified other sequence features that differ between

skipped (also known as ‘cassette’) exons and constitutive exons in human and mouse genes,

including increased conservation in the introns flanking exons skipped in both human and mouse

(9, 10, 14-16).  These observations motivated us to systematically identify, characterize and

integrate sequence features into a classifier that could be used to identify exons subject to

evolutionarily conserved exon skipping, here termed ‘alternative-conserved exons’ (ACEs).

4.1.3 Materials and Methods

Regularized least-squares classification

The regularized least-squares classifier (RLSC) was used to learn the features from SH,M and Sh,m

exons and to derive a real-valued output for unlabeled conserved exon pairs.  The RLSC has a

quadratic loss function and requires the solution of a single system of linear equations, (K +

lLW-1) c = y, in matrix notation.  The goal is to obtain an optimal vector c, defined as c = [c1 …

cL]T
, where L is the size of the training set, K is the L x L  kernel matrix, l is the “tradeoff”

between generalization and over-fitting, W is the diagonal matrix of penalties wi (equal to b for

positive examples and equal to 1 for negative examples), and y is the column vector of labels

(+1,-1). The algorithm, cross-validation, sampling, and performance measures are described in

further detail in Supporting Text, supporting information.

Experimental validation

The Invitrogen Superscript III First-Strand synthesis system for RT-PCR (Cat. No. 18080-051)

was used to generate cDNAs from normal human (fetal brain, fetal liver, cerebellum, heart,

whole brain, prostate, liver, lung, kidney, bone marrow, skeletal muscle and testis) and normal



Yeo et al.

165

mouse (embryonic mix, whole brain, kidney, skeletal muscle, liver, lung, heart and testis) tissues

using oligo(dT) primers. The Invitrogen Taq DNA polymerase kit (Cat. No. 18038-042) was

utilized with primers targeted to exons flanking candidate ACEs (for further details see

Supporting Text, supporting information).  PCR products of the expected size were gel-purified

using the QIAquick Gel Extraction Kit (Qiagen Cat. No. 28704).

4.1.4 Results and Discussion

Outline of strategy for identification of alternative-conserved exons

Our scheme for identifying ACEs consisted of three phases: 1) learning; 2) prediction; and 3)

validation (Fig. 1).  In the learning phase, a set of sequence features was identified, including

exon and intron length, splice site strength, sequence conservation, and region-specific

oligonucleotide composition, which differed between ‘training sets’ of 241 exons of the class

SH,M and ~5,000 exons of the class Sh,m defined above (Fig. 2).  Additionally, for training

purposes, exons of the Sh,m  class were chosen from genes containing at least one other exon with

evidence for AS, as genes lacking AS may be under different degree of selection than AS genes

(17). Next, these features were incorporated into a discriminant classifier, ACEScan, which was

used in the prediction phase to predict which of ~96,000 annotated orthologous human/mouse

exon pairs not previously known to exhibit conserved AS are in fact ACEs.  Finally, in the

validation phase, a subset of candidate exons with positive ACEScan scores (designated

‘ACEScan-positive’ or ACEScan[+] exons) was chosen for experimental testing, together with

two sets of negative control exons with negative ACEScan scores (‘ACEScan-negative’ or

ACEScan[-] exons): one set with previous transcript evidence for exon skipping in human (SH

category) and one set lacking such evidence (Sh category).
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  The following features were first incorporated into ACEScan: (i) exon length; (ii)

upstream and (iii) downstream intron lengths; (iv) 5' splice site (5'ss) and (v) 3' splice site (3'ss)

scores; (vi) nucleotide percent identity between orthologous human and mouse exons; and

human-mouse intronic sequence conservation (vii) within the last 150 bases upstream and (viii)

within the first 150 bases downstream of the exon.  In general, exon pairs skipped in both human

and mouse (set SH,M) were observed to be shorter than unskipped exon pairs (Sh,m), were flanked

by longer upstream and downstream introns, and possessed significantly weaker splice sites (Fig.

2).  Strikingly, exon-pairs in SH,M have significantly higher sequence identity and higher flanking

intronic conservation as compared to exon pairs in Sh,m (Fig. 2). High levels of sequence

conservation in the exons and flanking introns is suggestive of conservation of regulatory motifs

or RNA structure.  These observations are similar to and consistent with previous studies (10,

14-16).

Oligonucleotides useful in discrimination of alternative-conserved exons

Oligonucleotide features designed to score potential cis-regulatory elements consisted of the

highest-ranking (most biased) over- and under-represented oligonucleotides of length k (k-mers)

in different exon and intron regions. The regions considered were the first and last 100 bases of

exons and the proximal 150 bases in the upstream and downstream introns flanking the exon,

because of the high levels of sequence conservation in these regions and their proximity to the

regulated splice junctions.  Counts of conserved oligonucleotides in human-mouse nucleotide

alignments of the 150 bases of upstream and downstream intronic sequence and in the entire

exon were scored for enrichment in the set SH,M versus Sh,m.  Inclusion of oligonucleotide counts



Yeo et al.

167

from aligned as well as unaligned sequences permits scoring of cis-regulatory elements that both

do and do not require strict spatial constraints for function.

Oligonucleotides were ranked by their enrichment as measured by a c2 value. Several of

the over-represented intronic elements were similar to known intronic regulatory elements (e.g.

UGCAUG, UC-rich repeats; Table 1 and Supporting Text, which is supporting information).  We

propose that a significant fraction of the remaining elements may represent novel intronic

regulatory sequences.  A number of the over- and under-represented exonic elements were

similar to known or predicted ESE or ESS motifs (18, 19).  Their relative distribution (Table 2

and Supporting Text, which is supporting information) suggests that ACEs have a lower density

of ESEs and a higher density of ESS sequences relative to constitutive exons. Both of these

features would tend to facilitate exclusion by the splicing machinery. Previously, candidate ESEs

were identified in part based on enrichment in constitutive exons with weak splice sites (19).

The apparently reduced frequency of ESEs and increased frequency of ESS sequences in ACEs

relative to constitutive exons might reflect differing degrees of selection, with constitutive exons

presumably being under selection for efficient exon inclusion, while alternative exons are

presumably selected for inefficient inclusion under at least some conditions (e.g., cell-type

specificity or developmental stage-specific).

Integration and selection of features for accurate exon classification

 The task of integrating the general features and oligonucleotide features described above

into an algorithm that distinguishes exon pairs in SH,M (positively labeled) from those in Sh,m

(negatively labeled) was posed as a supervised binary classification problem. We adapted a

regularized least-squares classifier, which finds the optimal separating hyperplane in a high-
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dimensional space that distinguishes two classes of samples (20).  As it was not known a priori

which of the 8,245 general and oligonucleotide features were most important in the classification

scheme, models utilizing different combinations of the eight general features and the region-

specific oligonucleotide features were compared, and a feature selection protocol was used to

reduce the number of parameters and to retain only the most relevant oligonucleotide features.

In order to determine the optimal features and parameters for the classifier, the training

data were used to generate several models, by varying the choice of general features, the exon or

intron regions from which oligonucleotide features were generated, and the number of most

discriminative oligonucleotide features included. The model with the best performance utilized

all of the general sequence features and 240 oligonucleotides of lengths 4 and 5 (shown in Fig. 5,

supporting information).  This model assigned correct labels to ~90 exon pairs for every 100

exon pairs drawn equally likely from SH,M and Sh,m.  For an individual exon, the ACEScan score

was defined as the mean of the classifier outputs over 50 random samplings of the training data.

The distribution of ACEScan scores for the exon pairs in SH,M ranged from approximately –0.8

to 2.0 (arbitrary units), compared to a range of approximately –1.8 to 0 for most of the exons in

Sh,m (Fig. 1).  At a cutoff score of zero, only ~2% of Sh,m exons had positive ACEScan scores,

compared to ~61% of the exons in SH,M, suggesting that ACEScan[+] exon pairs are highly

enriched for ACEs.

Experimental validation of conserved AS for 21 of 30 ACEScan[+] exon pairs

A combination of experimental tests and bioinformatic approaches was used to explore the

features of ACEScan[+]  and ACEScan[-] exon pairs.  First, the splicing patterns of a set of 30

arbitrarily chosen ACEScan[+] exons were tested in a battery of human and mouse tissues by
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reverse transcriptase PCR (RT-PCR) with primers targeted to flanking exons.  ACEScan[+]

exons were selected from four intervals: I1 (ACEScan score from 0.0-0.5); I2 (0.5-1.0); I3 (1.0-

1.5); and I4 (greater than 1.5), spanning the range of scores of most SH,M exons. Panels of twelve

normal human tissues and eight normal mouse tissues were assayed.  In order to avoid the

undesired detection of aberrant or disease-specific splicing, tumor or other diseased tissues were

not utilized.  The products of these 600 RT-PCR reactions (30 exons x 20 tissues) were analyzed

by gel electrophoresis, and the identities of PCR products with expected sizes for mRNAs

including or excluding the test exon were confirmed by sequencing (Fig. 3A).  In all, 4 out of 9,

7 out of 8, 6 out of 8, and 4 out of 5 candidate ACEs in intervals I1, I2, I3 and I4, respectively,

were observed to undergo skipping in both human and mouse, while for another two exons (both

from interval I1) exon skipping was observed only in human tissues (Fig. 3; complete results

shown in Table 3 supporting information).  Thus, of 30 predicted ACEs interrogated by RT-

PCR, 21 were observed to be skipped in both human and mouse tissues, and high rates of

validation of AS were seen in all four score intervals.  These data support the presence of

conserved AS in a majority of ACEScan[+] exons.  Although the 30 ACEScan[+] candidates had

no previous transcript evidence for skipping, searches of the literature and low-stringency

searches of the cDNA and EST databases (August 2004) identified possible evidence for a

fraction of the AS events observed by RT-PCR, most often consisting of a single EST in only

one species.  In the examples studied, exon skipping was observed in many different

combinations of human and mouse tissues, suggesting that many of the features utilized by

ACEScan are characteristic of skipped exons generally, regardless of tissue-specificity.

Variations in tissue specificity of AS were observed between human and mouse for several tested

exons. However, a general tendency to conserve exon skipping in corresponding tissues was
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apparent, e.g., 9 out of 10 predicted ACEs observed to be skipped in human whole brain or

cerebellum were also skipped in mouse brain tissue (Table 3).

Low detection of conserved AS for ACEScan[-] exon pairs

As a negative control, eleven ACEScan[-] exon pairs from the set Sh were chosen from

the five score intervals C1 (-0.5 to 0), C2 (-1.0 to –0.5), C3 (-1.5 to –1.0), C4 (-2.0 to –1.5) and

C5 (less than –2.0) with at least one pair per interval.  Using the same RT-PCR-sequencing assay

and the same sets of human and mouse tissues, exon skipping was not observed for any of the

eleven negative control exons in any of the 12 human or 8 mouse tissues studied (Table 3,

supporting information).  Thus, considering both the human and mouse exons tested, exon

skipping was detected for 44 out of 60 ACEScan[+] exons (including 21 orthologous pairs),

compared to 0 out of 22 ACEScan[-] exons, a highly significant difference (P < 0.0001, Fisher

exact test).  Of course, for either group of exons failure to detect exon skipping by our RT-PCR

assay is not proof that exon skipping does not occur, and some exons not skipped in the tissues

studied might be skipped in other untested tissues.  However, low-stringency searches of the

August 2004 human and mouse EST databases failed to detect any evidence of skipping of the

11 ACEScan[-] exons tested.

As a second type of negative control, an arbitrary set of 15 ACEScan[-] exon pairs were

chosen from intervals C2 to C4, with the added requirement that transcript evidence of exon

skipping was present for the human member of each exon pair.  Using the same RT-PCR-

sequencing assay in the same set of 8 mouse tissues as above, exon skipping was detected for

only 2 out of the 15 mouse exons tested, suggesting that a substantial majority of these exon

pairs are not ACEs.  To explore the potential biological roles of the 13 remaining exons which
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undergo possible human-specific AS, we examined the tissue sources of the transcripts that

showed exon skipping: in 9 out of the 13 cases, these transcripts derived exclusively from cancer

cell-lines or diseased tissues, suggesting that many of these exons may be skipped primarily in

disease states rather than in normal human tissues.  The difference in the rate of RT-PCR

validation of exon skipping in mouse tissues for the ACEScan[+] exons tested (21 out of 30 =

70%), relative to the ACEScan[-] exons tested (2 out of 26 = ~8%), was also highly significant

(P < 0.002, Fisher exact test), demonstrating the power of ACEScan to discriminate

evolutionarily conserved AS exons from those which are either constitutively spliced or skipped

in a species- (or disease-) specific manner.

Many Literature-derived AS events correspond to ACEScan[+] exons

The principle that important regulatory elements are usually evolutionarily conserved is

well established, and forms the basis of a number of successful comparative genomics

approaches for identifying such elements (21).  To explore the extent to which this principle

applies to AS events, we extracted known exon skipping events from the Manually Annotated

Alternatively Spliced Events (MAASE) database (22), representing AS events that are curated

from published works.  A total of 29 exon skipping events in mouse were identified from this

database, for which both the human and mouse orthologous exons were available.  Strikingly,

almost all of the extracted exons had ACEScan scores greater than –0.5 (28 out of 29) and 62%

(18 out of 29) were ACEScan[+].  Thus, though small in scale, this analysis of published AS

events suggests that a majority of ‘interesting’ exon skipping events (i.e., interesting enough to

be described in the scientific literature) are ACEScan[+] and therefore that most such events are

conserved between human and mouse (Table 4, supporting information).
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About 11% of EST/cDNA-derived AS events are likely to be evolutionarily conserved

Of the ~4,300 exon-pairs with transcript evidence of skipping in human but not mouse (class

SH,m), only ~7% had positive ACEScan scores (Fig. 1).  Together with the observation that ~61%

of SH,M exons were ACEScan[+], this low fraction suggests that for only ~11% (= 0.07 / 0.61) of

the SH,m exons is AS likely to be conserved in mouse.  Thus, a surprising implication of these

data is that the vast majority of the AS events inferable from human EST/cDNA-genomic

alignments are not evolutionarily conserved in mouse.  Instead, most of these events may

represent aberrant, disease-specific, or allele-specific splicing (23), or events whose phylogenetic

distribution is highly restricted.

Functional differences between ACEScan[+] and ACEScan[-] exons

To assess potential functional differences between ACEScan[+] and ACEScan[-] exons that

either have or do not have EST or cDNA evidence of exon skipping in human, we analyzed the

density of single nucleotide polymorphisms (SNPs) and the frequency of reading frame

preservation and protein domain disruption for each of these three classes of exon.  Selective

pressure on nucleotide sequence was assayed by mapping stringently filtered reference SNPs

onto exons that had been scored by ACEScan (Fig. 3B).  This analysis found a ~50% higher

density of SNPs in ACEScan[-] SH exons than in ACEScan[+] exons (this difference is

significant at P < 10-5 by c2 test), suggesting that ACEs have been under much more stringent

selection to conserve nucleotide sequence in recent human evolution than other exons.  By

contrast, ACEScan[-] SH exons appear to have experienced a degree of selection that was more

similar to constitutive exons than to ACEs.
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Further evidence for the functional roles of many ACEScan[+] SH exons came from the

observation that a far higher fraction of these exons had lengths which were multiples of three

(68%, comparable to that seen in the training set of SH,M exons) than was seen for ACEScan[-]

SH exons, for which only ~43% had lengths divisible by three, near background levels for

constitutive internal exons (Fig. 3C).  This difference is highly significant (P < 10-15 by c2 test)

and implies the existence of strong selection on the alternative protein products derived from

alternative splicing of ACEScan[+] exons. Notably, divisibility of the exon length by three was

not used in the predictions (only the general size of the exon, with shorter lengths favored over

longer lengths).

The frequency of disruption or removal of a protein domain by AS has been studied by

several groups (24-26).   We found that only ~37% of ACEScan[+] exons overlapped open

reading-frame regions encoding Interpro-annotated protein domains by 30 bases (10 codons) or

more, a significantly lower fraction than for ACEScan[-] exons studied of either the SH or Sh

classes (Fig. 3D), both of which had similar frequencies of domain disruption (around 50%).

Reducing the minimum overlap to 15 bases gave similar results (data not shown).  This finding is

generally consistent with the results of Kriventseva and coworkers, who observed that protein

isoforms arising from AS are more likely to preserve protein domain structure than expected by

chance (25).  Taken together, the data shown in Fig. 3 consistently demonstrate that ACEScan[+]

exons are under strong selection to conserve function, both at the nucleotide level (Fig. 3B), and

at the level of the encoded alternative protein isoform  (Figs. 3C, D).  In contrast, ACEScan[-]

exons show less evidence of selective constraints at the nucleotide level (Fig. 3B) and there is

little if any evidence of additional constraints on the protein products derived from exon skipping
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of ACEScan[-] exons, even when there is transcript evidence that such skipping occurs (Figs.

3C, D).

Applications of ACEScan at the gene level

Application of ACEScan to well-studied genes illustrates some of the strengths and

limitations of our approach (APP and GLUR-B shown in Fig. 4; PTB and CACNA1G in Fig. 6,

supporting information).  Of the identifiable orthologous human/mouse exon pairs in these

genes, known exon skipping events (marked by asterisks) all received positive ACEScan scores,

implying that their skipping is likely to be conserved in mouse. Skipping of exons 7 and 8 of the

b-amyloid precursor protein (APP) gene, implicated in Alzheimer’s disease, was detected

successfully in a recent large-scale microarray analysis of AS in human tissues (27).  These

exons, as well as exon 15 of the APP gene received positive ACEScan scores (Fig. 4A); all three

of these exons are known to undergo exon skipping (28, 29). The GLUR-B gene, one of the four

GluR subunits that assemble to form the AMPA glutamate receptor, contains two well-known

skipped exons (‘flip’ and ‘flop’, exons 14 and 15), both of which received positive ACEScan

scores, as well as an exon (number 13, marked with an ‘E’) that undergoes RNA editing (30).

This edited exon and the downstream intron form an RNA hairpin and are highly conserved in

sequence (30).  Despite this high level of exonic and intronic sequence conservation, this exon

received a negative ACEScan score (Fig. 4B), providing an example of the specificity of our

method for AS exons. A web server has been set up at (http://genes.mit.edu/acescan) to provide

access to all ACEScan plots for Ensembl-annotated orthologous human/mouse gene pairs.

Recently, Bejerano et al. reported 111 exonic “ultraconserved” regions (UCRs) longer

than 200 bases with 100% sequence identity between the human and mouse genomes (31), most
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of unknown function.  Comparing these to our set of predicted ACEs, 33 of the 37 UCRs (~89%)

that mapped to internal exons that could be scored by ACEScan received positive ACEScan

scores, suggesting that a number of these elements correspond to ACEs.

Functional characteristics of ACEScan[+] genes

In total, 1,550 genes were identified, containing 2,041 ACEScan[+] exons, ~85% of which

lacked prior transcript (EST/cDNA) evidence for exon skipping. Initial comparisons to the

partially annotated rat genome showed a high correlation between human-mouse and human-rat

ACEScan scores, as expected (data not shown). In order to determine whether genes that contain

ACEScan[+] exons, which we refer to as ACEScan[+] genes, are biased towards particular

biological activities, we compared these genes to the set of genes not found to contain any

ACEScan[+] exons (ACEScan[-] genes) using Gene Ontology (GO) classifications

(http://www.geneontology.org) as previously described (31, 32). The results showed that

ACEScan[+] genes are enriched for transcription factors and aminopeptidase activity, and for the

actin binding, RNA binding and nucleic acid binding GO molecular function categories (Fig.

3E).  In terms of GO biological process categories, ACEScan[+] genes were more likely to be

involved in transcriptional regulation, neurogenesis, and development, and less likely to be

involved in transport than ACEScan[-] genes.  Only slight biases in GO category representation

were present in the training set of SH,M genes (Fig. 7, supporting information). Closer

examination of the ACEScan[+] genes that encode RNA binding factors identified ACEScan[+]

exons in genes encoding many of the heterogeneous nuclear ribonucleoproteins, a majority of

which (including PTB) are candidates for nonsense-mediated mRNA decay (NMD) (Fig. 6 and

Table 5, supporting information).
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To explore the expression patterns of genes containing predicted ACEs, we used

microarray data from the Gene Atlas survey of 47 diverse human tissues and cell lines (33).

Overwhelmingly, ACEScan[+] genes were more likely to be differentially expressed in a

spectrum of nervous system tissues, including spinal cord, fetal and adult whole brain, and in

several brain regions, compared to ACEScan[-] genes (Fig. 8 , supporting information).  Only

two cell lines (both ovarian) of the 47 tissues/cell lines studied exhibited similar biases.  These

results imply an unusually high frequency of conserved AS events in the brain.

While this work was in progress, two other groups have demonstrated that conserved

sequence features can be used to identify alternative exons in fruit fly (34) and human genes (14,

35). Our computational approach differs substantially in a number of ways: (i) ACEScan

associates a real-valued score to orthologous human-mouse exon pairs, rather than associating a

binary label to an exon-pair, which grants much greater flexibility in adjusting the algorithm’s

sensitivity/specificity compared to (14, 35); (ii) ACEScan does not use the length of the exon

modulo three in its predictions (14, 35).  This allows us to assess the degree of selection on

ACEs to preserve protein reading frame (Fig. 3C) rather than assuming that reading frame must

always be preserved, and it enables ACEScan to identify the subset of ACEs which create

mRNAs that encode truncated proteins or which are subject to NMD, an emerging class of

regulated AS events (36).  Supporting the validity of this subset of predictions, approximately

half of the ACEs validated by our RT-PCR-sequencing protocol had lengths that were not

divisible by three (Fig. 3A; Table 3, supporting information); (iii) a much larger set of

discriminatory features was utilized in ACEScan, including oligonucleotide features (compared

to (14, 34)), many of which are likely to represent splicing regulatory elements, and inclusion of

these features enhanced the performance of our algorithms (cf. 35).  Experimental validation of
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both predicted AS exons, as well as negative control exons, is crucial in providing estimates for

the reliability and accuracy of any computational approach.  A comparison of sensitivity and

specificity based on experimental validation demonstrates that ACEScan has higher accuracy

than previously published approaches  (Table 6, supporting information compares computational

differences and extent of validation).  Finally, the accuracy and relatively large numbers of ACEs

predicted by ACEScan allow us to identify functional and expression biases in the set of genes

containing high-confidence ACEs.

Comparative genomics, machine-learning techniques and rigorous experimental

validation have facilitated the accurate prediction of a core set of ~2,000 alternative-conserved

exons.  This much enlarged set of conserved alternative exons holds the potential for further

elucidating the roles of AS in modulating the expression of mammalian genomes.
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4.1.6 Figure Legends

Figure 1. Schematic overview of the learning and prediction stages of the ACEScan

procedure. In ‘Learning’, sequence features that differed between sets SH,M (skipped and

included in human and mouse) and Sh,m (only included in human and mouse) were

identified as described (Supporting Text, supporting information).  Random subsets of

SH,M and Sh,m were used to train the ACEScan algorithm and cross-validation scores were

calculated for the unseen subsets of SH,M and Sh,m.  The cross-validated ACEScan score

distributions for SH,M (red) and Sh,m (black) are shown.  For ‘Prediction’, spliced

alignment of transcript sequences were used to assign Ensembl-annotated exons from

~10,000 human-mouse orthologous gene pairs (not necessarily alternatively spliced) to

one of two sets: SH,m (included in some human transcripts and excluded in others, but

included in all mouse transcripts) and Sh,m (described above). ACEScan score

distributions for SH,m (purple) and Sh,m (blue) are shown.

Figure 2. Sequence features that differ between conserved alternative and constitutive

human-mouse exons.  (A) Features typical of exons of the SH,M (alternatively spliced) and

Sh,m (constitutive) training sets are depicted. SH,M exons had shorter median exon length

(93 bp versus 126 bp, P<10-22), longer upstream intron length (P<0.005), longer

downstream intron length (P<10-5), weaker 5' and 3' splice site scores (P<10-5 and

P<0.02, respectively, using MAXENTSCAN scores at http://genes.mit.edu), higher exon

sequence conservation (percent identity; P<10-46), and higher conservation (ClustalW

alignment score) in the 150 bp intron regions immediately upstream and downstream of

the exon (P<10-63 and P<10-66, respectively).  For each feature, the Kolmogorov-Smirnov
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(KS) test was used to test the null hypothesis of independent samples drawn from the

same underlying population.  Length and splice site score values are shown for human

exons/introns; mouse values were similar.  Average percent identity for alignments of

flanking intron regions are shown in a 9-base sliding window for SH,M (red) and Sh,m

(dashed, black) exons.  (B) Pentanucleotides utilized by ACEScan.  Over- (under-)

represented pentamers in exon or 150-base flanking intron regions of SH,M versus Sh,m

exons are shown in red (black).  Pentamer frequencies were analyzed separately for

ClustalW-aligned regions only (‘aligned’) or entire region (‘unaligned’).  Exon 5'-, 3'-

ends refer to first/last100 bases of exon.

Figure 3. Validation of ACEScan[+] predictions using experimental and computational

approaches. (A) Experimental validation via RT-PCR and sequencing of subsets of

candidate ACEScan[+] exons and negative control ACEScan[-] exons in panels of

normal human and mouse tissues with primers in flanking exons.  Graphical

representations of splicing patterns (inclusion/exclusion) and the number of exon-pairs

observed to be excluded and included are designated in red and black respectively.  The

three randomly selected subsets tested were: (i) 30 ACEScan[+] exon pairs; and as

negative controls, (ii) 15 ACEScan[-] SH exon pairs (with EST/cDNA evidence for both

inclusion and exclusion of the human exon, indicated by horizontal lines representing

spliced transcripts); and (iii) 11 ACEScan[-] Sh exon pairs (with no transcript evidence

for skipping in either human or mouse). (B) SNP density in ACEScan[+], ACEScan[-]

SH, and ACEScan[-] Sh exons.  The number of stringently filtered SNPs per 10,000 bases

were computed for each exon set.  (C) Fraction of SH,M exons, ACEScan[+] SH exons, and
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ACEScan[-] SH exons that have lengths that were a multiple of 3, and the background

fraction of frame-preserving constitutive exons.  (D) Analysis of protein domain

preservation of ACEScan[+], ACEScan[-] SH, and ACEScan[-] Sh exons that maintain

reading-frame (i.e. length divisible by 3).  Maximum exon size cutoffs (150, 110 and 108

bp for ACEScan[+], ACEScan[-] SH, and ACEScan[-] Sh exons respectively) were

utilized to avoid exon length biases.  The median length of exons in each subset was 84

bases, with no significant difference in the distribution of sizes among the sets (by a

Kruskal-Wallis non-parametric test).  The minimum number of exonic bases overlapping

the protein domain was set to 30 bases. (E) Gene Ontology (GO) “Molecular function”

and “Biological process” categories which differed significantly (P < 0.05) in the

representation between genes containing predicted ACEs (black bars) and genes not

containing predicted ACEs (white bars) are shown.  Statistical significance was assessed

using c2 statistics with Bonferroni correction for multiple hypothesis testing.  GO

categories are ordered from right to left in order of increasingly significant bias towards

genes containing predicted ACEs.  Only one category (transport) was significantly biased

towards genes without predicted ACEs.

Figure 4.  ACEScan scores for internal exons of well-known alternatively spliced genes.

Known alternative exons are indicated by asterisks; the known RNA edited exon of

GLUR-B is indicated by the letter ‘E’.  The following known AS exons are illustrated:

(A) Exons 7 (168 bp), 8 (57 bp) and 15 (54 bp) of the human amyloid beta protein

precursor gene (APP, ENSG00000142192); (B) Exons 14 (115 bp) and 15 (249 bp) of the

human glutamate receptor, AMPA 2 gene (GLUR-B, ENSG00000120251).
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4.1.9 Supporting Information: Supporting Text, Figures and Tables

Sequence datasets

Chromosome assemblies of the human genome (hg13) and the mouse genome (mm3)

were obtained from the UCSC Genome Browser, http://genome.ucsc.edu. Transcript data

used included ~94,000 human cDNA and ~91,600 mouse cDNA sequences obtained

from GenBank (release 134.0, flatfiles in categories gbpri, gbrod and gbhtc), and ~5¥106

human expressed sequence tags (ESTs) and ~3.5¥106 mouse ESTs from dbEST

(repository 032703).  The GENOA genome annotation script

(http://genes.mit.edu/genoa/) was used for spliced alignment of cDNA sequences and

ESTs to the human and mouse genomes. GENOA detected matches of significant blocks

of identity between a repeat-masked cDNA sequence and genomic DNA using BLASTN

(1).  Matched pairs are then aligned, using the spliced alignment algorithm,

MRNAVSGEN (http://genes.mit.edu/genoa/).  Subsequently, ESTs were aligned to

cDNA-verified genomic regions using SIM4 (2). For inclusion in the final GENOA

annotation, all ESTs were required to overlap one or more cDNAs, and both the first and

the last segments of the spliced alignment were required to exceed 30 nucleotides in

length with 90% sequence identity.  In addition, the entire EST sequence alignment was

required to extend over 90% of the sequence length and have greater than 90% sequence

identity.

Overall, GENOA aligned ~86,000 human cDNAs and ~890,000 ESTs, and

~27,000 mouse cDNAs and ~483,000 mouse ESTs.  Genes with multiple cDNA

alignments were resolved into separate gene loci containing single genes and candidate
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regions with alternative exon-intron structures. 5'-terminal and 3'-terminal exons were

separated from internal exons and excluded from further analyses, as they possess

different splicing characteristics as well as sequence composition from internal exons.

Exons were categorized as constitutive exons, alternative 3' splice site (3'ss) exons,

alternative 5'ss exons, skipped exons, multiply alternatively spliced exons (e.g., exons

observed to undergo both exon skipping and alternative 5'ss usage), and exons containing

retained introns. Genes with at least one identified alternative splicing (AS) event were

categorized as AS genes; all other genes were considered constitutively spliced (CS)

genes.  An exon was defined as a skipped exon (SE) if it was included in one or more

transcripts and excluded at least one other transcript.  Specifically, a transcript aligned

such that the 3' end of the corresponding upstream exon and the 5' end of the

corresponding downstream exon were juxtaposed was considered as evidence of exon

skipping.  Human and mouse SEs were identified independently, using transcript data

specific to each organism. Human/mouse orthologous gene pairs were taken from

EnsMart and Ensembl version 16 (3). Reciprocal best BLAST hits were used to identify

orthologous human-mouse exons within these orthologous genes.  Spliced alignment of

ESTs to cDNA-verified regions of assembled human and mouse genomic sequences was

used to infer splicing patterns of exons.

Exon-intron sequence regions and feature extraction

The following sequence features were extracted for each conserved human-mouse exon

pair: exon length, upstream intron length, downstream intron length, 5'ss (donor site) and

3'ss (acceptor) scores, exon conservation (percent identity), upstream and downstream
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150-base intron region conservation (ClustalW alignment score (4)), and a list of

oligonucleotide occurrence counts, described below.  Length features were transformed

to logarithmic (log10) scale and splice sites were scored using a maximum entropy

model(5).  Exons were divided into four different regions: the last 150 bases of the

upstream intron (or the entire intron for introns shorter than 150 bases), the first 150

bases of the downstream intron (or the entire intron), the first 100 bases of the exon (or

the entire exon), and the last 100 bases of the exon (or the entire exon).  Occurrence

counts for all oligonucleotides of length k for k ranging from 3 to 6 nucleotides were

calculated from the four regions described above.  Counts were generated separately from

unaligned and ClustalW-aligned regions.  In either case, all overlapping k-mers contained

completely in the given region were counted.  k-mers that occurred less than twice in the

SH,M and Sh,m training sets were excluded from further analysis.  For training of

ACEScan, k-mers were ranked by enrichment in SH,M versus Sh,m exons and their flanking

introns, as scored using a c2-statistic for a 2 x 2 contingency table, with Yates correction

factor{Glantz, 1997 #1300}.  For each region in SH,M and Sh,m (rows contingency table),

the number of occurrences of each k-mer and the number of occurrences of all remaining

k-mers were determined (table columns).  The oligonucleotide features were ranked and

the top N features were extracted and concatenated into a (M+N)-dimensional vector,

where M is the number of general sequence features used.  The top-ranked

oligonucleotide features used by ACEScan included some 5-mers and some 4-mers

(Table 1), but no 3-mers or 6-mers.
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Known cis-elements in high-ranking oligonucleotides

The motifs UGCAU and GCAUG were found to be over-represented in both the

upstream and downstream introns flanking exons subjected to conserved skipping (Fig.

2B).  Similar sequences, e.g., the hexamer UGCAUG, are known to be involved in

regulation of splicing of the c-src, fibronectin, nonmuscle myosin heavy chain and

calcitonin genes (6-9).  The UCUCU pentamer, which is similar to sequences involved in

splicing repression in the neural-specific N1 exon of the c-src transcript (10), was also

identified as over-represented in the introns upstream of SH,M exons and in the exons

themselves. A number of other U-rich sequences were also over-represented in upstream

introns, consistent with previous observations (11, 12).  The sequence UAGGG, which

forms a portion of the consensus hnRNP A1 binding site, and can act in negative

regulation of splicing (13), was also over-represented in SH,M exons relative to unskipped

exons.  Motifs related to GUAGU, also over-represented in SH,M, have been validated as

exonic splicing silencers (ESSs) in cultured human cells (Z. Wang, C. B. B., Cell in

press).  On the other hand, two pentamers which were under-represented in SH,M relative

to Sh,m, CUGGA and AGAAG, resemble consensus ESEs (UGGA and GAGAAG,

respectively) identified in previous analyses (14, 15).  In fact, more detailed analyses

suggest that a significantly higher fraction of oligonucleotides enriched in Sh,m matched

computationally predicted and experimentally validated ESEs (14) as compared to

oligonucleotides enriched in SH,M (Table 2).
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Classification, cross-validation and sampling

The regularized least-squares classifier (RLSC) was used to learn the features from SH,M

and Sh,m.  The RLSC has a quadratic loss function and requires the solution of a single

system of linear equations (16).  Due to the unbalanced size of the two sets, i.e., there

were about 25 times more exon-pairs in Sh,m (negative examples) than in SH,M (positive

examples),  errors made on the positive examples cost a multiplicative factor of b times

greater than the penalty for errors made on the negative examples.  The binary-class

RLSC classification problem was stated as

minf (1/L) S i=1:L wi (yi – f(xi) )
2 + l||f||2K (1)

where f and ||f||2K are the function and function norm induced in a reproducing kernel

Hilbert-space respectively, L is the size of the training set, l is the “tradeoff” between

generalization and over-fitting and wi is a misclassification penalty, set to b if sample xi

had a positive label (yi=1), otherwise set to 1. To address the potential for incorrect

labeling of Sh,m exons because of incomplete coverage by transcript data, the

misclassification parameter b for positively labeled data was set to 5, higher than the

value for negatively labeled data.  Assuming a solution f* of the form

f* (u) = S i=1:L ci K(u, xi) (2)

where K(u,v) = <u,v>, ci are coefficients, and K is the L x L  kernel matrix satisfying Kij

= K(xi, xj), and W is the diagonal matrix of penalties wi, the problem was rewritten in

matrix notation and the optimal c, defining c = [c1 … cl]
T

  was found, by substituting Eq.

(2) into Eq. (1),

(K + lLW-1) c = y.  (3)
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Fixing l and b and solving for c using the conjugate gradient method

(implemented in Matlab), test examples were assigned an output according to Eq. (2).  In

order to solve Eq. (3) efficiently, K was expressed as AAT, where A was the L x d matrix

of training examples with d features.  By first computing a =ATc, the outputs for

unlabeled (‘test’) examples were obtained by matrix multiplication of B and a, where B

is the n x d matrix of n unlabeled examples.

Cross-validation was used: for each model, 80% of the exon-pairs from SH,M and

80% of the pairs from Sh,m were used to train the classifier, which then assigned outputs

(predicted classifications) to the remaining 20% of unseen exon pairs. The performance

of different models was averaged over 50 iterations of sampling training and test subsets.

Area under the curve (AUC) values were obtained for each iteration, and the average

AUC value was used to measure model performance (described below). Empirically, it

was found that l=0.01 and b=5 gave optimal performance. Empirically, it was also

determined that the model labeled i in Fig. 5 obtained the highest AUC value, at a cutoff

of ~ –0.5.  The ACEScan score for an exon pair was defined as the mean prediction

output over 500 random samples of the training set.  Similarly, when ACEScan was

utilized to score unseen Ensembl-annotated human-mouse exon pairs (i.e. exon pairs not

in the training set), each pair was assigned an ACEScan score calculated as the mean

output from 50 random samples of the training data from SH,M and Sh,m.  The approach of

taking the average output from many different samplings of the training set corresponds

closely to the use of “bagging” in statistical machine learning (17).  The set of

ACEScan[+] exons will be made available on the web at [http://genes.mit.edu/acescan] at

the time of publication.
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Performance measures

Receiver Operating Characteristic (ROC) curve analysis (18) was used to assess the

performance of models in binary hypothesis testing.  A ROC plot graphically represents

the true positive rate (on the y-axis) versus the false positive rate (x-axis) as a function of

the threshold used in prediction, and displays the tradeoff between the sensitivity and the

false positive rate (increases in sensitivity are generally accompanied by an increase in

false positives).  The integrated area under the ROC curve (AUC) was used to measure

performance (higher AUC values correspond to improved classification performance).

Gene Ontology analysis

Gene Ontology (GO) identifiers (IDs) for each Ensembl-annotated gene were obtained

from EnsMart (release version 19.1).  Organizational principles (molecular function,

biological process) were obtained from http://www.geneontology.org.  For each term

(e.g., neurogenesis, GO ID:0007399), the fraction of genes containing predicted ACEs

and not containing predicted ACEs relative to the genes under the overall principle (e.g.

GO ID:0007399 was found under biological process) was compared by a c2 test of

significance, with Yates correction factor (19).  Adjusting for multiple hypothesis testing

using Bonferroni correction {Glantz, 1997 #1300}(217 terms were compared with at

least 10 genes belonging to the term for molecular function; 187 terms were compared for

biological process), enriched terms were identified at a significance cutoff of P<0.05.
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Gene expression analysis

Affymetrix HG-U95A microarray gene expression from 47 human tissues and cell-lines

previously published by Su and colleagues (20) were obtained from the Gene Expression

Atlas (http://expression.gnf.org).  Mappings for Affymetrix probe identifiers were

obtained from EnsMart (release 19.1). Average difference (AD) values lower than 20

were standardized to 20, as described (20).  Genes expressed in a tissue or cell-line at

greater than 2 times the standard deviation above the median expression across tissues or

cell-lines were defined as tissue-specifically expressed in that tissue or cell-line.  For each

tissue, the fraction of genes containing predicted ACEs and not containing predicted

ACEs relative to the set of all tissue-specifically expressed genes was compared using a

c2 test, with the Yates correction factor {Glantz, 1997 #1300}.  Adjusting for multiple

hypothesis testing using Bonferroni correction, enriched tissues were again identified at a

significance cutoff of P<0.05.

Single nucleotide polymorphism (SNP) analysis

8,408 high-quality reference SNPs (an 11-mer with 11-mer flanks on both sides) were

obtained (21) and mapped to exons scored by ACEScan. The SNP density for a set of

exons was calculated by dividing the total number of SNPs contained in the exons by the

total length of all exons within the set.

Protein domain analysis

Human Ensembl transcripts and Ensembl annotated Pfam protein features (22) were

obtained from the EnsMart database (Ensembl version 22.34).  The start and end

locations of each annotated protein feature with respect to the translated transcript were
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obtained and compared to the coordinates of the exons in the transcript.  A protein feature

was considered to overlap an exon if W bases or more of the exon was within the feature.

W was adjusted from 5 to 30 bases in steps of 5 bases to test the robustness of the

measurement.  A c2 test was performed to determine if high-scoring ACEScan exons

overlapped exons at a lower or higher rate compared to low-scoring ACEScan exons that

were designated as skipping (and non-skipping) events using transcript alignments from

ESTs.

Experimental validation

The Invitrogen Superscript III First-Strand synthesis system for RT-PCR (Cat. No.

18080-051) was used to generate cDNAs from 3-4 ug of total RNA from human tissues

(whole brain, fetal brain, heart, fetal liver, cerebellum, prostate, liver, lung, kidney,

skeletal muscle, bone marrow and testis) and mouse tissues (whole brain, testis, liver,

lung, skeletal muscle, kidney, heart and a pool from embryonic 5, 11, 15, and 17-day

tissues) from Clontech (BD Biosciences) using oligo(dT) primers. The Invitrogen Taq

DNA polymerase kit (Cat. No. 18038-042) was utilized with primers designed using the

primer3 program (23) targeted to exons flanking candidate ACEs.  Forty cycles of PCR

using an ABI 9700 thermocycler were conducted at denaturing temperature of 94o C for

30s, annealing at 58 o C for 30 s, and elongation at 72o C for 30-100 seconds depending

on the size of the predicted products.  PCR products were resolved on a 2% agarose gel

(Merck) at 116 volts in TBE buffer.  Bands of the expected size were gel-purified using

the QIAquick Gel Extraction Kit (Qiagen Cat. No. 28704) according to the

manufacturer’s instructions.  Each isolated band was amplified by additional rounds of

PCR with the same primers before sequencing.
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Legends to Supporting Figures

Fig. 5.  Performances of various models differing in the choice of features and the
number of oligonucleotide features. A. The average area under the curve  (AUC) values
obtained from cross-validation with different models using varying numbers of top
ranking oligonucleotide features are shown.  B.  Different models (a to i) are shown in
the table, utilizing (denoted with a tick mark, otherwise a cross) different combinations of
features, such as core features (5'ss, 3'ss scores, exon lengths, upstream and downstream
flanking intron lengths), upstream and downstream intron alignment scores, exon
alignment or similarity scores; and oligonucleotide features from aligned regions (exon
alignment features, upstream and downstream intron alignment features), as well as
unaligned regions (exon features, flanking intron features).

Fig. 6.  ACEScan scores for all orthologous human-mouse exons identified by our
automated procedure in example genes are shown.  Known alternative exons are
indicated by asterisks. The following known AS exons are illustrated: (A) Exons 14 (69
bp) and 26 (54 bp) of the human voltage-dependent T-type calcium channel alpha 1G
subunit gene (CACNA1G, Ensembl gene identifier ENSG00000006283).
Electrophysiological studies have shown that skipping of exon 26 of CACNA1G, which
encodes a1g (a human brain T Ca2+ channel a1 subunit), affects the kinetics of
deactivation and recovery from inactivation of the channel (24). This gene has three other
cassette (skipped) exons, numbered 14, 34 and 35 (25), the latter two of which were not
paired to annotated mouse exons by our automated exon orthology script, and therefore
did not receive ACEScan scores.  These latter examples remind us that incompleteness of
annotation or orthology assignment places certain limits on the sensitivity of comparative
methods like ACEScan. (B) Exon 11 (34 bp) of the human polypyrimidine tract-binding
protein gene (PTB, ENSG00000011304). Skipping of this exon yields a premature stop
codon in the downstream exon, generating a substrate for nonsense-mediated mRNA
decay in an auto-regulatory negative feedback loop (26).  This PTB exon provides an
example of function for one of the ~32% of predicted ACEs which disrupt reading frame.

Fig. 7.  The fraction of genes containing putative ACEs from SH,M used in training, the
fraction of genes containing predicted ACEs, and the fraction of genes from all Ensembl-
annotated genes annotated in the various Gene Ontology (GO) terms.

Fig. 8.  Expression patterns of genes with predicted ACEs.  Tissues exhibiting significant
over- / under-representation of genes containing predicted ACEs (P < 0.05) in tissue-
specifically expressed genes. Genes differentially expressed (greater than two-fold higher
than median value across all tissues) in a HG-U95A microarray study (see main text)
were considered tissue-specifically expressed. Tissues are ordered from right to left in
order of increasingly significant bias towards genes containing predicted ACEs.



198

Table 1.

Table 1.  The highest ranked 240 oligonucleotide sequences utilized in ACEScan. These
oligonucleotide features are ranked from most significantly differentially represented
between SH,M and Sh,m (1) to least significantly differentially represented (240) by the c2

statistic with Yates correction factor.  Within each column, features are ordered by the
level of enrichment in SH,M versus Sh,m, and represented according to pertinent sequence
regions.  Features in black (red) represent oligonucleotides enriched in SH,M (Sh,m).

Rank
Upstream 

intron
Rank Exon 5' end Rank Exon 3' end Rank

Downstream 
intron

Rank
Aligned 

upstream 
intron

Rank
Aligned 

exon
Rank

Aligned 
downstream 

intron
12 tttc 11 cctcc 15 tccc 27 tgcat 10 tgcat 21 tgtag 2 gcatg
16 cttt 23 tccc 25 cctcc 80 gcatg 20 cgct 22 gtagt 6 tgcat
19 gccgc 30 cctc 39 ccctc 109 tcgca 28 gcat 26 actag 7 catg
47 tttt 46 ctccc 41 caatc 111 tccg 34 ccgc 31 tagaa 13 gcat
50 tttcc 61 ccctc 51 ctccc 136 cttt 37 gcatg 33 cctcc 17 catgc
63 ttgc 94 caatc 56 cctc 144 cgca 38 ctat 35 cgaag 18 tgca
65 tctct 119 tccct 67 ccct 165 tgtgc 43 ttgc 45 cccgc 24 ttgc
73 tctc 125 ctcc 74 aaag 168 cattg 48 cgtc 53 ctacg 29 acta
75 cgct 135 ccccc 96 tccct 171 tgccg 49 gtcg 55 taacg 58 atgca
78 ccgc 167 acata 110 gtccc 185 tcgcg 57 cgggg 64 taaac 60 ctaa
84 tccg 180 cggcg 113 tcctt 201 ccgc 59 acta 68 tctag 76 ctaac
97 tgtct 196 aaag 118 aggg 213 ctaac 72 caat 69 tagtg 77 gtttg
99 ttgtc 206 aggg 140 ctcc 217 gtttg 81 cggg 79 taacc 91 gccg
102 ctctt 207 cccc 152 tcccc 219 gacag 82 acgt 89 cgcgg 93 actaa
117 ctttc 215 cccgc 199 gaaa 184 ggaca 83 cacg 95 cgccc 122 ccaa
124 gccg 220 taacc 203 gaaag 194 atgat 86 atcc 101 taggc 123 cacta
126 tcttt 222 tctct 211 cccgc 198 agag 87 acact 103 cacga 139 cactt
132 tctt 223 caggg 225 tagg 141 aggg 90 ttaac 106 cgtag 166 cggt
133 cgccg 212 tgat 234 cgaag 98 caggg 100 actac 128 cccta 175 caat
134 tcctt 230 cgtgg 236 aaaag 85 gagg 105 cctat 129 gtcgt 176 caaat
146 tcct 162 gacc 238 tgaaa 88 cagg 107 gccg 130 ttacg 205 catgg
148 ccgct 114 ctgg 172 catca 42 tgag 115 caac 137 taggg 221 atgc
149 tgcat 195 gtac 32 gtgag 120 cgtt 138 cctcg 228 cact
151 ttcc 155 tggcc 127 cgca 142 cggcg 150 agag
159 ccttt 70 ctgg 145 tccat 143 tacga 92 taagt
169 ctct 154 catat 153 tctct 40 taaga
182 ttctc 160 tgcg 158 agtag 36 gagt
187 ctat 161 ggcg 163 ccgcg 14 tgagt
200 tttg 178 cccg 164 agtta 9 taag
204 tttgc 186 ccga 170 ttaat 8 gtaa
224 ttttt 188 cgat 173 tagga 5 gtga
232 gtttc 190 catc 174 actga 4 tgag
208 ggac 214 ctatt 177 tcctt 3 gtaag
210 gagg 226 cgga 183 gaaag 1 gtgag
227 aggc 240 tccg 189 ctcgc
229 gacag 237 cctg 191 taatt
179 ggctg 239 ccag 193 caatc
181 cagg 192 aaaa 197 ccgct
156 tggag 147 cagg 209 ccccc
121 ggaca 157 gagg 216 ggcgg
131 gagc 116 gtgag 218 ctagc
62 tggg 104 ctgg 231 ctctc
44 ggag 66 tgag 233 ccgaa

235 atcaa
202 tggag
108 catca
112 acctg
71 ctgga
52 gctgg
54 ctggc



199

Table 2.
Cutoff for enrichment 3.84 5.02 6.64

Fraction of oligonucleotides enriched in SH,M

exons that overlap RESCUE-annotated ESE
hexamers

0.36 0.39 0.39

Fraction of oligonucleotides enriched in Sh,m

exons that overlap RESCUE-annotated ESE
hexamers

0.88 0.90 0.83

p-value 0 1.0E-13 1.0E-6

Table 2.  Overlap of over and under-represented oligonucleotides in human SH,M versus
Sh,m, and RESCUE-annotated ESEs.  Oligonucleotides (4,5-mers) that were enriched in
SH,M or Sh,m at different cutoffs (3.84, 5.02, 6.64, corresponding to c2

 values for different
p value cutoffs) were considered to overlap a RESCUE-annotated ESE if a subsequence
of length 4 or 5 bases of an oligonucleotide was an exact match to a continuous
subsequence constructed from a RESCUE-annotated ESE hexamer (14).  RESCUE-
annotated ESEs are under-represented in the set of k-mers that are enriched in SH,M, as
opposed to the set that are enriched in Sh,m.  The statistical significance was assessed by
using the c2 test with Yates correction factor.
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Table 3.
ID Human

Ensembl
ID

(ENSG

00000#)

Human
Exon

Human
Exon

Length
(bp)

Mouse
Ensembl ID
(ENSMUSG

00000#)

Mouse
Exon

Gene Name SEScan
Score

Skipping in
human

tissues (RT-
PCR)

Skipping
in mouse
tissues

(RT-PCR)

Other evidence

S1 091129 24 36 020598 24 NRCAM 1.73 Ce Br, Te,
Emb

Ref. (27)

S2 078328 5 93 008658 5 A2BP1 1.67 - Sk, Lu,
Li, Te,
Emb

Ref. (28)

S3 083312 20 76 009470 19 TNPO1 1.61 Br, Te, He,
Ce, Sk, Bm,

FBr

Br

S4 079819 12 63 019978 12 EPB41L2 1.59 Br, Pr, Li,
Lu, Ki, Sk,

Bm, Te

Br, Ki, Li,
Sk, Te,

Emb, He,
Lu

S5 137764 17 27 032364 16 MAPKK 5 1.48 - Ki, Li Human
NM_002757.2 skips

17 & 18

S6 137764 18 33 032364 17 MAPKK 5 1.38 - Ki, Li Human
NM_002757.2 skips

17 & 18

S7 175388 4 33 048320 4 Q8N787 1.26 Pr, Li, Lu,
Ki, Sk, Bm,

Te

Ki, Sk,
Lu, Li,

Te, Emb,
He

S8 156113 9 92 021780 2 KCNMA1 1.22 Te Li, Lu

S9 182872 4 74 031060 5 RBM 10 1.05 Li, Lu, Te Br, Ki,
Sk, Lu,
Li, Te,

Emb, He

S10 144331 4 163 027016 3 ZNF533 1.03 Br, Pr, Te,
He, Li, Ce,

Sk, Bm,
FLi, Ki,

FBr

Br, Li

S11 130558 4 220 026833 4 OLFM1 0.99 FBr Br, Ki

S12 155970 9 39 039478 8 NM_181723 0.95 Ce, FBr, Br Br

S13 172660 8 35 020680 8 TAF15 0.92 Br, Pr Br, Ki,
Sk, Lu

S14 112062 9 80 024004 9 MAPK14 0.80 Pr, Li, Lu,
Ki, Sk, Bm,

Te

Sk, Li

S15 169045 5 139 007850 5 HNRNPH 0.78 Br, Pr, Li,
Lu, Ki, Sk,

Bm, Te

Br, Li, Te

S16 079819 13 147 019978 13 EPB41L2 0.68 Br, Pr, Li,
Lu, Ki, Sk,

Bm, Te

Br, Ki, Li,
Sk, Te,

Emb, He,
Lu

S17 114098 11 83 032468 13 NM_014154 0.67 Li, Lu, Ki Sk, Lu

S18 169057 2 125 031393 2 MECP2 0.36 - Br, Li,
Te, Ki,
Lu, Bm,

He

Ref. (29)
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He

S19 149970 9 147 025658 8 NM_014927 0.21 Br, Pr, Li,
Lu, Ki, Sk,

Bm, Te

Br, Ki, Te

S20 122367 4 368 021798 5 LDB3 0.14 Te Br, Ki, Li,
Te, Emb,

He

S21 101977 5 117 031139 3 MCF2 0.10 Br Br, Ki

S22 060237 12 279 045962 Matched
sequence
in intron

PRKWNK1 0.26 Ki, Sk, Bm Not
Skipped

Mouse annotation
unclear

S23 136531 3 92 026992 6 Scn3a 0.10 Pr, Te, Ki,
FBr

Not
Skipped

S24 153944 2 41 034017 2 MSI2 1.75 Not
Skipped

Not
Skipped

S25 121964 5 92 036890 9 NM_024659 1.30 Not
Skipped

Not
Skipped

S26 155966 19 53 031189 5 FMR2 1.06 Not
Skipped

Not
Skipped

S27 182197 3 108 038616 4 EXT1 0.69 Not
Skipped

Not
Skipped

mRNA AK130054
(Lu): Exons 2-6

skipped

S28 079739 7 116 025791 8 PGM1 0.36 Not
Skipped

Not
Skipped

S29 164692 33 108 029661 37 COL1A2 0.14 Not
Skipped

Not
Skipped

S30 117676 11 89 003644 11 RPS6KA1 0.14 Not
Skipped

Not
Skipped

C1 069188 22 202 041592 16 SDK2 -0.27 Not
Skipped

Not
Skipped

C2 073670 22 120 020926 22 ADAM11 -0.81 Not
Skipped

Not
Skipped

C3 183773 6 97 022763 6 NM_144704 -1.41 Not
Skipped

Not
Skipped

C4 143761 3 111 020440 3 ARF1 -1.62 Not
Skipped

Not
Skipped

C5 146904 4 403 029859 5 EPHA1 -2.01 Not
Skipped

Not
Skipped

C6 140859 6 112 031788 6 KIFC3 -0.99 Not
Skipped

Not
Skipped

C7 018236 13 176 000107 14 CNTN1 -0.71 Not
Skipped

Not
Skipped

C8 008405 12 104 020038 12 CRY1 -1.15 Not
Skipped

Not
Skipped

C9 178035 8 91 006666 8 IMPDH2 -1.15 Not
Skipped

Not
Skipped

C10 164070 7 245 025757 7 OS94_HUMAN -1.66 Not
Skipped

Not
Skipped

C11 130812 5 271 038742 6 ANGPTL6 -1.55 Not
Skipped

Not
Skipped

E1 166164 10 108 031660 10 BRD7 -0.98 EST/mRNA
evidence

Not
Skipped

BX377621 (placenta
cot 25-normalized)

BI860548 (mammary
adenocarcinoma cell

line)
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line)

AV747130 (Adult
Pituitary)

E2 132849 32 84 028562 22 NM_005799 -0.66 EST/mRNA
evidence

Not
Skipped

mRNA AJ224748
(HeLa)

Exon is not seen in
any other mRNAs (5)

or ESTs (2)

E3 100395 3 134 022394 3 L3MBTL2 -0.86 EST/mRNA
evidence

Not
Skipped

BU171558
(melanotic
melanoma)

Exon is included in
all other mRNAs (8)

and ESTs (>40)

E4 107897 3 121 026781 2 ACBD5 -0.73 EST/mRNA
evidence

Br, Ki,
Emb

ESTs
(neuroblastoma,

BM011542,
BM011474); mRNAs

(BC025309,
neuroblastoma;

AB082527, brain)

E5 120992 6 74 025903 6 LYPLA1 -0.65 EST/mRNA
evidence

Not
Skipped

BQ434220
(embryonic

carcinoma), H04075
(placenta at birth),

BE246387
(leukopheresis)

E6 076513 13 161 041870 13 ANKRD13 -1.24 EST/mRNA
evidence

Not
Skipped

AK095130
(substantia nigra)

E7 103876 12 102 030630 12 FAH -1.26 EST/mRNA
evidence

Not
Skipped

S63549 (tyrosinemia
patients), Exon

included in 30 ESTs

E8 120137 3 177 018846 4 PANK3 -1.03 EST/mRNA
evidence

Not
Skipped

U46305 (Pancreatic
cancer)

E9 124198 35 131 027682 35 ARFGEF2 -1.04 EST/mRNA
evidence

Not
Skipped

BU173319
(Retinablastoma)

E10 106443 5 160 029629 6 PHF14 -1.05 EST/mRNA
evidence

Not
Skipped

BF816107
(adenocarcinoma)

E11 170248 10 178 032504 10 PDCD6IP -1.56 EST/mRNA
evidence

Not
Skipped

BQ961575
(leiomyosarcoma)

E12 107937 3 104 021149 3 GTPBP4 -1.58 EST/mRNA
evidence

Not
Skipped

AK097093 (spleen,
skips exon but retains
downstream intron)

E13 134899 12 145 026048 12 ERCC5 -1.59 EST/mRNA
evidence

Not
Skipped

AA191090 (hNT
neuroteratocarcinoma

neurons)

E14 150753 3 165 022234 3 CCT5 -1.83 EST/mRNA
evidence

Not
Skipped

AU143554
(retinoblastoma)

E15 132170 6 451 000440 7 PPARG -1.54 EST/mRNA
evidence

Br, Ki, Li,
Emb, Te

BI524664
(NIH_MGC_122),

CA426975
(subchondral bone)

Table 3. Candidate ACEs verified by RT-PCR experiments and subsequent sequencing,
or by literature and transcript-based evidence.  Samples S1 to S30 are candidate ACEs,
samples C1 to C11 are low scoring ACEs (scored <0), and samples E1 to E15 are low
scoring ACEs with human EST/mRNA evidence of skipping.  (Abbreviations for tissues
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are as follows.  Ce: cerebellum, Br: whole brain, FBr: fetal brain, Sk: skeletal muscle, Li:
liver, Lu: lung, He: heart, Bm: bone marrow, Te: testis, Pr: prostate, Ki: kidney, FLi: fetal
liver, Emb: embryonic mix).
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Table 4.

No. MAASE Gene Name MAASE ID

Ensembl
mouse
identifier
(ENSMUSG0
00000#) Exon #

Human
exon length

(bp)

Mouse
exon

length
(bp)

ACEScan
score

1 NOS1 - Nitric-oxide synthase, brain 267255 29361 15 102 102 0.12
2 MBP – Myelin basic protein 292857 41607 9 78 78 -0.41
3 MBP – Myelin basic protein 292857 41607 12 33 33 0.06
4 MBP – Myelin basic protein 292857 41607 13 120 123 -0.39
5 ACSL6 – Long-chain-fatty-acid--CoA ligase 6 325273 20333 13 78 78 0.10
6 ACSL6 – Long-chain-fatty-acid--CoA ligase 6 325273 20333 14 78 78 0.36

7
MCF2L - Guanine nucleotide exchange factor
DBS 330913 31442 13 93 93 -0.39

8
MCF2L - Guanine nucleotide exchange factor
DBS 330913 31442 14 74 75 -0.14

9 SPTAN1 - Spectrin alpha chain, brain 340288 57738 11 60 60 0.72
10 SPTAN1 - Spectrin alpha chain, brain 340288 57738 44 18 16 0.46
11 TEC – Tyrosine-protein kinase Tec 272000 29217 11 66 66 -0.61
12 TNNT2 - Troponin T, cardiac muscle isoforms 273074 26414 7 30 37 0.11

13
KCNMA1 - Calcium-activated potassium
channel alpha subunit 1 275823 63142 27 174 174 0.63

14
KCNMA1 - Calcium-activated potassium
channel alpha subunit 1 275823 63142 33 81 81 0.39

15
KCNMA1 - Calcium-activated potassium
channel alpha subunit 1 275823 63142 39 29 29 1.45

16 CAST – Calpain inhibitor 287853 21585 9 66 57 -0.18
17 CAST – Calpain inhibitor 287853 21585 34 45 36 -0.33
18 DTNA - Dystrobrevin alpha 315011 24302 25 78 78 1.16
19 DTNA - Dystrobrevin alpha 315011 24302 33 21 21 1.58
20 DTNA - Dystrobrevin alpha 315011 24302 46 93 93 -0.38
21 MBNL2 - Muscleblind-like 2 Isoform 1 315631 22139 9 54 54 2.08

22
TNNT3 - Troponin T, fast skeletal muscle
isoforms 329096 61723 8 18 18 -0.1

23
TNNT3 - Troponin T, fast skeletal muscle
isoforms 329096 61723 9 21 15 0.22

24
TNNT3 - Troponin T, fast skeletal muscle
isoforms 329096 61723 24 41 41 0.54

25
TNNT3 - Troponin T, fast skeletal muscle
isoforms 329096 61723 25 41 41 -0.42

26 TPM3 - Tropomyosin alpha 3 chain 272578 27940 9 76 76 0.38
27 TPM3 - Tropomyosin alpha 3 chain 272578 27940 10 76 76 0.16
28 TPM3 - Tropomyosin alpha 3 chain 272578 27940 14 79 83 -0.05

29
PHKA1 - Phosphorylase B kinase alpha
regulatory chain, skeletal muscle 292503 34055 22 177 177 0.39

Table 4. ACEScan scores of mouse skipped exons from the MAASE database (30).
MAASE identifier (ID), gene name, and exon sizes for the identified mouse and
orthologous human exons. Exon pairs were then scored by ACEScan.
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Table 5.

Gene Name Human
Ensembl ID

Human
Exon
No.

Exon
length
(bp)

Mouse
Ensembl ID

Mouse
Exon
No.

Exon
length
(bp)

ACE-
Scan
Score

Evidence

HnRNP A1 135486 7 156 036021 3 159 0.81 Ref. (31)

HnRNP D0 138668 2 57 000568 2 57 0.21 Ref. (32)

HnRNP H 169045 5 139 007850 5 139 0.78 Table 3

HnRNP I/PTB 011304 11 34 006498 8 34 0.90 Ref. (26)

HnRNP K 165119 16 170 021546 14 170 0.33 -

HnRNP K 165119 6 44 021546 4 44 1.39 EST BI115223

HnRNP K 165119 8 72 021546 6 72 1.02 EST AK096385

HnRNP L 104824 6 73 015165 6 73 0.16 -

HnRNP M 099783 3 53 002291 3 53 1.00 4 Human, 3 Mouse

ESTs

HnRNP R 125944 2 108 028666 3 119 0.28 -

HnRNP FUS 089280 6 35 030795 6 35 0.29 -

Table 5.  Heterogeneous nuclear ribonucleoproteins with predicted ACEs. Proteins of the
hnRNP family are involved with a host of important mRNA-related functions, such as
nuclear export, subcellular localization, translation, and stability (33).  In addition, some
are known to regulate the splicing of their own or other transcripts (26, 31).  The first
column contains the Ensembl-identifier  (last 6 digits) of the human and the orthologous
mouse genes, the second column contains the exon number of the predicted exon in the
longest transcript of the Ensembl-annotated genes, the third column contains the exon
length, and the fourth column contains the corresponding ACEScan score and the last
column contains literature or transcript-based evidence for exon skipping.
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Table 6.

Differing
Attributes

ACEScan Sorek et al. (34) Dror et al. (35) Philipps et al. (36)

Goal To identify conserved
exon-skipping events in
human and mouse

To identify skipped
exons in human that are
conserved in mouse

To identify skipped
exons in human that are
conserved in mouse

To identify various
types of alternative
splicing events in fruit
fly

Computational
General features Exon size, intron size,

exonic and intronic
conservation

Exon size, exonic and
intronic conservation.
Length of best local
alignments in 100 bases
of flanking introns

Same as Sorek et al.
(34)

Exonic and intronic
conservation

Oligonucleotides 4- and 5-mers in
aligned and unaligned
regions in exons and
150 bases of flanking
intronic regions

- 3-mers in exons and
flanking 100 bases of
unaligned introns.

-

Exon length divisible
by 3

Not required Required Required Not required

Splice Sites MaxENT scores for
5’ss and 3’ss

- 5’ss information,
polypyrimidine tract
“intensity”

-

Type of score Real-valued Binary Real-valued Binary
Classifier Regularized Least-

Squares Classifier
Rule-based Support Vector

Machine
Rule-based

Experimental
Validation of predicted
exon-skipping events

Yes Yes - Yes

Predictive accuracy by
RT-PCR and
sequencing

21/30 (70%) skipped in
human and mouse

6/15 (40%) skipped in
human only; 9/15
(60%) alternatively
spliced (including
alternative 5’ and 3’ss)
in human only

- 23/91 (~25%)
alternatively spliced in
D. melanogaster; 11/13
alternatively spliced in
D. pseudoobscura

Negative Controls 0/11 (0%) ACEScan[-]
exons skipped in human
or mouse;  2/15 (13%)
ACEScan[-] exons
with human transcript
evidence skipped in
mouse

- - 1/30 (3%) alternatively
spliced in D.
melanogaster

Tissues used Normal (12 tissues in
human and 8 tissues in
mouse)

Normal and Tumor (14
tissues in human)

- Normal (pooled
embryo, larvae and
adult)

Functional analysis at
exon level

Functional analysis at
gene level

SNP density; reading-
frame preservation;

protein domain
disruption; gene
expression; gene
functional
characterization

-

-

-

-

-

-

Table 6.  Comparison of ACEScan to other methods for predicting alternative splicing
events.  Different approaches are distinguished with respect to the features utilized in the
computational approach, and the extent of experimental and computational validation
performed.
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Fig. 5.

A.

B.

Model index A b c d e f G h i

Core features x ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷

Upstream intron alignment
score

x x x ÷ ÷ ÷ X ÷ ÷

Downstream intron
alignment score

x x x ÷ ÷ ÷ ÷ x ÷

Exon alignment score x x ÷ x ÷ x ÷ ÷ ÷
Upstream intron alignment
features

x x x x x ÷ x ÷ ÷

Downstream intron
alignment features

x x x x x ÷ ÷ x ÷

Exon alignment features x x ÷ x x x ÷ ÷ ÷
Flanking intron features ÷ ÷ x ÷ ÷ x x x ÷
Exon features ÷ ÷ x ÷ ÷ x x x ÷
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Fig 7.
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4.2 Splicing silencing by combinations of UAGG and GGGG motifs

Before I begin this section, which describes a joint project with Kyoungha Han (KH) from Paula Grabowki’s

group at the Department of Biological Sciences, University of Pittsburgh/HHMI, it is important to credit the

vast majority of the experimental portion of this work to KH.    My main areas of contribution were mainly in

the computational analysis of the use of the combination of motifs to predict exon-skipping events in human,

and validation of the targets.

4.2.1 Abstract

Alternative pre-mRNA splicing is widely used to regulate gene expression by tuning the levels of tissue-

specific mRNA isoforms. Yet, the molecular language that allows for intricate adjustments and the

coordination of splicing patterns on a global scale is largely unknown. The CI cassette exon (exon 19) of the

glutamate NMDA R1 receptor (GRIN1) transcript is used here as a model system to identify the sequence

determinants for a brain region specific silencing mechanism. We identify a novel pattern of exonic UAGG

and 5’ splice site GGGG motifs that functions cooperatively to silence the CI cassette exon in mammalian

cells. In this system, hnRNP A1 mediates silencing, whereas hnRNP H functions as an antagonist to silencing.

This analysis was extended using bioinformatics to explore the wider role of the identified motif pattern in the

human and mouse genomes. We find that, although uncommon, conserved patterns of UAGG and GGGG

motifs serve generally as a predictive code to identify skipped exons genome-wide that otherwise bear no

sequence relatedness. The identification of a similar arrangement of motifs in skipped exons of the hnRNP H

family of splicing factors (HNRPH1 and HNRPH3 transcripts) has implications for their coordinate regulation

at the level of splicing. These results provide a rationale to explain an essential feature of the tissue-specificity

of the CI cassette exon - why this exon, which is equipped with strong splice sites, is prominently skipped in

the hindbrain.
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4.2.2 INTRODUCTION

Alternative pre-mRNA splicing is a major determinant of the protein functional diversity underlying

human physiology, development and behavior (Lander et al. 2001). This process combines exonic sequences

in various arrangements to generate two or more mRNA transcripts from a single gene. Splicing patterns are

inherently flexible with variations observed in different cells, tissues and at different stages of development

(Maniatis and Tasic 2002). Inducible changes in splicing pattern can also occur as a function of cell excitation

in neuronal systems, T cell activation, heat shock, or cell cycle changes (Wang et al. 2001; Xie and Black

2001; Shin and Manley 2002; Shin et al. 2004). Thus, a central problem is to understand how the flexibility of

splicing is controlled in different biological systems. A related issue is to understand how splicing errors,

including alterations in splicing patterns, arise from inherited mutations or polymorphisms and contribute to

human disease (Caceres and Kornblihtt 2002; Cartegni et al. 2002; Faustino and Cooper 2003).

Splicing decisions occur in the context of the spliceosome, a highly complex molecular machine

containing the small nuclear ribonucleoprotein particles U1, U2 and U4/U5/U6 (snRNPs), and a host of

protein factors (Makarov et al. 2002; Zhou et al. 2002; Jurica and Moore 2003). Spliceosome assembly occurs

in a stepwise fashion to recognize the appropriate splice sites, to fashion the snRNP-based catalytic activity,

and to couple the splicing process with transcription, 3’ end formation, and nuclear export. Exon definition, or

recognition of the exon as a unit, occurs early in spliceosome assembly, and its efficiency depends upon the

strengths of the adjacent splice sites, as well as auxiliary splicing regulatory elements.

RNA control elements, which are distinct from the canonical splice sites, include the positive-acting

exonic and intronic splicing enhancers (ESEs and ISEs), and the negative-acting exonic and intronic splicing

silencers (ESSs and ISSs) (Cartegni et al. 2002; Fairbrother et al. 2002; Ladd and Cooper 2002). In order to

achieve 100% inclusion of the exon in the processed mRNA, constitutive exons generally require some

combination of ESEs in addition to the adjacent splice sites. Serine-arginine rich (SR) protein factors are

important mediators of splicing enhancement in both constitutive and alternative splicing events. These
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proteins recognize ESE motifs through their RNA binding domains, and recruit splicing factors via

interactions with their RS domains (Tacke and Manley 1999; Blencowe 2000).

Alternative splicing affects the majority of human protein coding genes (Modrek et al. 2001; Johnson

et al. 2003), but the molecular control mechanisms are poorly understood. Molecular dissection of a handful

of prototypical alternatively spliced genes has shown that cassette exons are included at a frequency that

depends on their complex arrangement of positive and negative RNA control elements. It is thought that

combinatorial control, which involves the integrated actions of multiple RNA control elements and protein

regulatory factors, is the basis of tissue specific patterns of splicing. Many protein factors of the SR protein

and hnRNP protein families have been implicated in these mechanisms, and some of their expression patterns

are tissue specific. The polypyrimidine tract binding protein (PTB/hnRNP I), for example, has important roles

in mechanisms of negative control important for brain- and muscle-specific splicing events. Current evidence

indicates that PTB/hnRNP I takes part in silencing by recognizing RNA elements containing UCUU and

related motifs, and through protein oligomerization blocks recognition of the exon by the normal splicing

machinery (Wagner and Garcia-Blanco 2001). The hnRNP A1 protein has also been implicated in a variety of

cellular and viral splicing silencing mechanisms through its cooperative recognition of UAGGG[U/A]  and

related motifs (Chabot et al. 2003).

The CI cassette exon (exon 19) of the GRIN1 transcript (NMDA-type glutamate receptor, NR1 subunit)

is a valuable model to study mechanisms of regulation because of its striking patterns of tissue-specific

splicing and developmental regulation in the rat brain (Wang and Grabowski 1996; Zhang et al. 2002). Note

that the CI exon is referred to as E21 in these previous studies. The CI exon is prominently included in the

forebrain, and prominently skipped in the hindbrain, but the control mechanisms underlying these patterns are

poorly understood. The RNA binding protein NAPOR/CUGBP2 is thought to be a positive regulator of this

exon since this factor promotes CI cassette exon inclusion in co-expression assays, and because its tissue-

specific expression correlates with the spatial distribution of mRNA transcripts containing the CI exon in rat

brain (Zhang et al. 2002). In mammals, NMDA-type glutamate receptors are assembled from GRIN1 (NR1)

and GRIN2A (NR2) subunits, where they play highly important roles impacting learning and memory
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functions in the brain. Alternative splicing is used extensively for the generation of the brain-specific GRIN1

transcripts, and CI exon inclusion affects the trafficking of NMDA receptors to the synapse (Ehlers et al.

1995; Mu et al. 2003).

In many cases tissue-specific exon inclusion is modulated by combinations of sequence motifs acting

cooperatively or antagonistically to control splicing (Smith and Valcarcel 2000). An understanding of the

essential ingredients for splicing silencing should allow skipped exons to be identified de novo from genomic

sequence. Here molecular approaches are used to identify sequences responsible for silencing the CI cassette

exon, and this analysis is extended using bioinformatics to explore the distribution of the identified motifs in

the mammalian transcriptome. Paradoxically, the CI cassette exon undergoes predominant exon skipping in

particular regions of the brain even though its adjacent splice sites match well to consensus patterns. In our

previous study, a large portion of the downstream intron was shown to play a role in the silencing mechanism,

but the factors involved in silencing were not defined (Zhang et al. 2002). Here we define a sensitive

mechanism for silencing of the CI cassette exon that involves the interplay of exonic and 5’ splice site motifs.

We also show that different configurations of these silencing signals have predictive value for identification of

skipped exons in the human and mouse genomes.

4.2.3 RESULTS

A 5’ splice site GGGG and exonic UAGG motif are required in combination for silencing of a

brain-region specific exon. The 5’ splice site of the CI cassette exon is atypical due to the presence of an

adjacent GGGG motif, which is conserved in human, rat and mouse GRIN1 genes. GGGG motifs in the first

10 nucleotides of human introns are infrequent (see below). In the case of the CI cassette exon, the GGGG

motif is immediately adjacent to the U1 snRNA complementary region of the 5’ splice site, and the overall

complementarity of the 5’ splice site (6 base pairs) is in the normal range for mammals (6 to 7 base pairs), and

includes all of the most highly conserved positions (-1 to +5).

The role of the GGGG motif in splicing silencing of the CI cassette exon was examined by generating

site-directed mutations in nucleotides +6, +7, and +8 of the intron. These mutations were designed so as not to
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disrupt the U1 snRNA complementary nucleotides, which include the last nucleotide of the CI exon and the

first 5 nucleotides of the adjacent intron. Splicing assays involved transfecting splicing reporters into non-

neuronal mouse myoblasts (C2C12 cells) followed by measurement of the levels of the exon-included and

exon-skipped products by RT-PCR relative to the wild-type sequence.

Each mutation in the GGGG motif led to a dramatic increase in exon inclusion (Figure 1A). The

strongest effects were observed when the ggg at +6 to +8 was converted to ccc (5m2) or aua (5m4), which

resulted in approximately a four-fold increase in exon inclusion, compared to the wild-type sequence. Even a

point mutation (5m9) resulted in a three-fold increase in exon inclusion. Thus, the GGGG motif plays an

important role in the silencing mechanism. Additional sequence changes upstream and downstream of the

GGGG motif had only modest effects on splicing. For example, mutations 5m1, 5m13, and 5m14 were

designed to test potential RNA secondary structures involving the GGGG motif and complementary intron

sequences. The modest changes in the splicing pattern resulting from these mutations, do not support a

significant role in splicing for these putative structures.

Other than the GGGG motif at the 5’ splice site, the sequence of this intronic region is devoid of

guanosine rich sequences. Strikingly, introduction of a GGG at intron positions +40 to +42, (5m8) resulted in

a 5-fold decrease in exon inclusion. Two additional mutations overlapping the 5m8 mutation that did not

generate guanosine rich motifs had little or no effect on the splicing pattern (5m11 and 5m12). Thus, these

results do not support an enhancing role for the original wild-type sequence, but imply that an additional

guanosine-rich sequence can contribute to silencing.

The possibility that sequences within the CI cassette exon itself might contribute to the silencing

mechanism was also explored. Either a scarcity of ESE sequences within the CI cassette exon might weaken

exon definition, or the presence of exonic ESS sequences might enforce silencing. A model for the

arrangement of ESE motifs in the CI cassette exon was based on the high affinity sequence recognition sites

for the known SR splicing factors (Figure 1B, top). Mutations were then made in the ASF/SF2 (AGCCCGA,

CACCCUG, CGUAGGU) and SC35 (CGACCCUA, GGCCUCCA, GUCCUCCA) motifs to test predictions
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of this model anticipating that reduced exon inclusion should result from the disruption of functional ESE

motifs.

The results of these experiments show that most of the mutations decreased exon inclusion consistent

with ESE function (E1, E2, E3, E4, E5 and E6; Figure 1B). In contrast, a pair of double point mutations in a

UAGG sequence beginning at position 93 of the exon generated a striking increase in exon inclusion,

indicative of a silencing role for this sequence (E8 and E9; Figure 1B). Note that the overlapping ASF/SF2

motif is disrupted by the E9 mutation, but the E8 mutation generates a different ASF/SF2 motif. An additional

six-nucleotide mutation (CAUCGU) that eliminates the ASF/SF2 motif at this position also resulted in a

strong increase in exon inclusion (KH and PG, unpublished). These results show that the position 93 UAGG

motif functions in C2C12 cells primarily as a silencer rather than as an ASF/SF2 motif. These results

suggested the possible involvement of the splicing repressor hnRNP A1 based on the similarity of the UAGG

motif to the hnRNP A1 high affinity binding sequence UAGGG[A/U] determined previously by SELEX

experiments (Burd and Dreyfuss 1994).

A motif pattern for strong splicing silencing: analysis of quantity and position effects. The

presence of two natural UAGG motifs in the CI cassette exon raised the question of how silencing might be

affected by the number of exonic UAGGs. The number and position of UAGG motifs in the CI cassette exon

were altered in the context of the wt0 splicing reporter (Figure 2). One set of mutations varied the position of

the 5’ splice site proximal UAGG by disrupting the original motif at position 93 of the exon, and by

introducing a new UAGG motif at positions 11, 76, and 100 (splicing reporters E10, E11, E20). These

position variations had surprisingly small effects on the pattern of splicing, and exon skipping predominated

(Figure 2, lanes 1-4).

The effect of a single UAGG was examined at positions 11, 51, 76, 93 and 100 of the exon (splicing

reporters E14, E8, E15, E13, and E21). The resulting splicing patterns showed predominant exon inclusion,

within a range of 78 to 94% (lanes 5-10). Thus, even in the presence of an intact GGGG motif at the 5’ splice

site, the removal of one UAGG significantly reduces the rate of exon skipping, and again there is a modest

effect of position.
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From these experiments we conclude that splicing silencing in this context depends critically on the

number of UAGG motifs in the exon, but less so on their relative position(s).  Additional mutations were

constructed to further test the hypothesis that the strength of splicing silencing is linked to the number of

UAGGs in the exon. In one case, a third UAGG was introduced at position 11 of the exon (splicing reporter

E18, lane 12), with the result that the level of exon inclusion decreased to 0.4%. Thus, the results of Figure 2

are consistent with a model in which multiple UAGG motifs function in a cooperative manner to modulate the

splicing silencing of the CI cassette exon.

Exons lacking the two natural UAGG motifs in the presence and absence of the GGGG motif were also

generated (splicing reporters, E17 and T8, respectively; lanes 11, 13). The resulting splicing pattern shows

83% exon inclusion in the presence of the GGGG motif, and this increases to ~100% inclusion when the motif

is disrupted. These results show that the GGGG motif contributes to splicing silencing even in the absence of

exonic UAGG motifs in agreement with our bioinformatics results below. Finally, the number of UAGG

motifs was found to modulate the level of exon skipping in the absence of the GGGG motif (D0 and D8, lanes

14, 15). Thus, we conclude that strong splicing silencing of the CI cassette exon requires multiple UAGG

motifs in the exon together with a GGGG motif adjacent to the 5’ splice site.

Opposing roles of hnRNP A1 and H family proteins involved in silencing and anti-silencing effect

of GGGG motif. What protein factors interact directly with the UAGG and GGGG motifs, and what are their

roles in splicing silencing? GTP-labeled RNA substrates were subjected to UV crosslinking in HeLa nuclear

extracts under in vitro splicing conditions. These experiments showed pronounced crosslinking to a protein

doublet in the vicinity of 50 kDa for RNA substrates containing the intact GGGG motif (cs1 and 3h1, Figure

3A, lanes 1, 3). In contrast, a point mutation in the GGGG motif largely disrupts protein binding (cs3 and 3h3,

lanes 2, 4). Because the apparent molecular weights of these proteins and the guanosine-rich binding

specificity (Caputi and Zahler 2001) suggested hnRNP H/H’ and F proteins, relevant antibodies were obtained

for immunoprecipitation experiments. These results identify the bottom band of the doublet as hnRNP F

(Figure 3A, lane 6), whereas the upper band corresponds to hnRNP H/H’ (lane 8). Although the hnRNP F

antibody is highly specific, the H/H’ antibody crossreacts with hnRNP F, which is 95% identical to H/H’ at
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the protein sequence level. A control reaction (lane 10) shows the background level observed with preimmune

serum.

 Proteins that interact directly with the exonic UAGG motif were identified in a similar way, except

that the RNA substrates contained a single radioactive label in the middle of the UAGG. Even with a single

radioactive label, multiple proteins are observed to crosslink to the wild type substrate, wt3, under splicing

conditions (Figure 3B, lane 4). To examine hnRNP A1 binding, the SELEX-derived consensus sequence,

A1winner, was also tested in parallel. A low efficiency of UV crosslinking of hnRNP A1 has been observed

previously (Burd and Dreyfuss 1994). The A1winner contains two UAGGGA sequences, and was found to

crosslink predominantly to hnRNP H/H’ and F, in comparison to A1 (lane 1 and data not shown). These

results verify that A1 is immunoprecipitated as a ~35 kDa protein from the wt3 sample, as is the case for the

A1winner (lanes 1-8). A control substrate, mt3, with a dinucleotide mutation in the UAGG showed little or no

immunoprecipitation of crosslinked A1 (lanes 9-11). Thus, these results verify that hnRNP A1 is involved in

the recognition of the exonic UAGG motif.

In order to establish the functional roles of hnRNPs F, H, and A1 in the silencing mechanism, each

protein was co-expressed with splicing reporters containing the CI cassette exon, and effects on the splicing

pattern were documented. For the wild-type splicing reporter containing an intact GGGG motif,

overexpression of hnRNP F or H was found to enhance CI exon inclusion relative to the pcDNA control

(Figure 3C, lanes 1-5). These effects were reduced, but not eliminated, in the presence of the 5m2 splicing

reporter, which lacks the GGGG motif (lanes 6-10). Curiously, these results rule out a role in silencing of the

CI exon for hnRNP F and H, and instead support an anti-silencing role for these factors.

 Next we asked whether the silencing role of the GGGG motif is mediated through the effects of

hnRNP A1, since the CI cassette 5’ splice site is related to the A1 consensus binding motif (ACGguaaggggaa

versus UAGGG[A/U]). These experiments also examined effects of the flanking introns, since our previous

study demonstrated a role for the downstream intron in this silencing mechanism. Chimeric splicing reporters

contained the CI cassette exon and various portions of the flanking introns inserted between exons 1 and 3 of

the GABAA receptor g2 subunit (Figure 3D). When the complete downstream intron was present, co-



221

expression of hnRNP A1 decreased exon inclusion from 78.8% to 29.1%, nearly a 3-fold effect (Figure 3D,

lanes 5, 6). The effect of hnRNP A1 depends upon the intact downstream intron, since the silencing effect was

substantially reduced when most of the downstream intron was removed, (rGgCI-wt0 and rGgCI-up, lanes 1-

4). The role of the GGGG motif was then examined in the context of the rGgCI-dn reporter by introducing

mutations 5m2 and 5m4, which destroy the G cluster. The ability of hnRNP A1 to induce splicing silencing

was reduced significantly by these mutations (rGgCI-dn5m2 and rGgCI-dn5m4, lanes 7-10). The observation

that silencing is not completely abolished by the 5m2 and 5m4 mutations is consistent with the presence of

multiple UAGG motifs in the exon and in regions of the downstream intron important for the hnRNP A1

effects.

Genome-wide analysis reveals association of silencing motifs with EST-confirmed exon skipping

in human and mouse. We next wished to generalize this analysis by determining the extent to which the

combination of UAGG and GGGG motifs is associated with exon skipping in the human and mouse genomes.

This analysis involved computationally sorting a database of ~96,000 human and mouse orthologous exons

into two datasets based on the presence or absence of the CI cassette motif pattern (Figure 4). Confirmed

skipped exons were then mapped onto these datasets to determine the fraction of exon skipping in the sorted

datasets. Confirmed skipped exons were identified by stringent cDNA and EST evidence (see Materials and

Methods).

If the motif pattern indeed functions as a general splicing silencing signal, we would expect the

frequency of exon skipping to be higher in the group of exons containing the UAGG and GGGG motif

pattern, compared to those without. A perfect correlation with exon skipping was considered unlikely due to

the abundance of ESE motifs, which in particular combinations might counteract the effects of silencing.

These results actually show that 18.8% of human exons of typical length (≤ 250 base pairs) containing

an exonic UAGG and 5’ splice site GGGG arrangement are skipped exons, compared to 4.6% of exons in the

database lacking these motifs (Figure 4). When exon length is not constrained the fraction of skipped exons

with the motifs was slightly lower (15.8%), and still significant.
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Variations of the CI cassette motif pattern were also analyzed for comparison. Notably this analysis

showed that the occurrence of 5’ splice site GGGG by itself is associated with exon skipping. That is, exons

containing the GGGG motif in the first ten bases of the intron but entirely lacking UAGG and GGGG within

the exon showed a higher rate of exon skipping (7.8%) compared to those without the GGGG intronic motif

(4.6%). How critical is the proximity of the intronic GGGG to the 5’ splice site? Comparing the fraction of

exon skipping when the position of the intronic motif is moved slightly downstream to bases 11-20 of the

intron rather than bases 1-10 reduced the fraction of skipped exons observed by approximately 2-fold.  In

these searches the exons identified were required to contain a conserved exonic UAGG in addition to the

intronic GGGG motif. These data suggest that this type of silencing mechanism may involve direct

competition with U1 or U6 snRNPs for binding to the 5’ splice site.

Since UAGG is a known hnRNP A1 motif this analysis also searched for ≥ 1 UAGG in the exon and

UAGG in the first ten bases of the adjacent downstream intron. The dataset containing this motif pattern

showed a significant enrichment of confirmed skipped exons (7.0%) compared to those without (4.6%).

Another pattern, ≥ 1 GGGG in the exon and UAGG in the first ten bases of the intron also showed enrichment

for confirmed skipped exons (8.4%) compared to those without (4.6%). Searching more broadly for any

combination of UAGG and/or GGGG motifs in the exon again showed enrichment for confirmed skipped

exons when GGGG (6.9%) or UAGG (8.1%) was present in the first ten bases of the intron. Nonetheless the

motif pattern most predictive of exon skipping is that originally identified for the CI cassette exon.

UAGG: under-represented in constitutive exons, over-represented in skipped exons. Under-

representation of UAGG in constitutively spliced exons would be expected if this motif frequently plays a role

in splicing silencing. For this analysis ~5000 known human cDNAs were downloaded from Ensembl

(www.ensembl.org), and sequences that begin with AUG and end with UGA, UAG or UAA were shuffled 50

times using the program Codonshuffle. Condonshuffle randomizes the nucleotide sequence by swapping

synonomous codons, preserving the encoded amino acid sequence, codon usage and base composition of the

native mRNA (Katz and Burge 2003). Consequently, the program controls for constraints on the protein

coding function of the mRNA, and for constraints on codon usage. It should be noted that in this analysis the
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codon arrangements that allow for UAGG do not permit the UAG portion of the motif to be in-frame. Based

on the codon shuffling analysis we observed a 1.5-fold reduced occurrence of UAGG in real coding sequences

as compared to shuffled sequences. This effect is significant and indicates that for constitutive exons there is

strong selection against UAGG sequences.

Next we asked if UAGG is indeed overrepresented in skipped human exons. As expected, internal

UAGG and GGGG are significantly overrepresented in skipped exons as compared to constitutive exons in

human (c2 = 436 and 87, respectively; P-value < 10-5). More rigorously, orthologous exons that are skipped in

both human and mouse have a significant enrichment for UAGGC and UAGGG motifs that are conserved in

sequence and position between mouse and human (c2 = 15 and 13, respectively; P-value < 10-4) compared to

orthologous pairs of constitutive exons.

Identification of skipped exons with conserved UAGG and GGGG motif patterns across the

human and mouse genomes. We next wished to identify exons unrelated to the CI cassette that might be

silenced by a similar motif configuration. Consequently, we focused in more detail on the UAGG and GGGG

motif pattern by searching for these motifs singly and in combination in the database of ~96,000 human and

mouse orthologous exons. Exons containing a GGGG in the first 10 bases of the intron and one or more

exonic UAGG(s) were identified in the human and mouse subsets of the database and as the intersection of

these datasets. These data are presented as Venn diagrams, and specific examples selected from the

Intersection dataset are shown to illustrate the pattern and conservation of the motifs (Human and Mouse

subsets, and Intersection; Figure 5A).

As expected, the CI cassette exon of the GRIN1 gene was found in all three of the overlap datasets. Of

the 19 exons containing the motif pattern in the intersection dataset, 16 exons ≤ 250 bases in length were

considered for further study based on the observation that skipping of longer exons is quite rare (Sorek et al.

2004). This dataset contained two well known splicing factors, hnRNP H1 and H3 (HNRPH1 and HNRPH3).

Although human hnRNP H1 contains 14 exons and H3 contains 10 exons, the UAGG and GGGG motif

pattern was found associated with only one exon in these genes. As hnRNP H proteins are known to bind to
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guanosine-rich sequences, the presence of a conserved GGGG motif in the 5’ splice sites of these hnRNP H

exons suggests the possible involvement of a splicing autoregulation.

The hnRNP H exons and additional candidates in the Intersection dataset (total of 12) were selected for

experimental validation of exon skipping patterns by RT-PCR, and to investigate the tissue specificity of the

splicing patterns in human tissues (Figure 5B and Table 1). The CI cassette exon was included in the analysis

as a positive control (GRIN1). Skipping of the candidate exon for both the human hnRNP H1 and H3 genes

was confirmed in several tissues. Candidate exons of GRIPAP1, UTRN and an uncharacterized hypothalamus

protein gene were also confirmed to be skipped exons, and tissue-specific exon skipping was evident for

HNRPH1 exon 5, HNRPH3 exon 3, GRIPAP1 exon 2, UTRN exon 5. These tissue-specific patterns were not

previously characterized. The results of Figure 5B were confirmed by DNA sequence analysis of the gel-

purified products of the RT-PCR reactions. Although the candidate exon in the ANXA8 gene was not

experimentally validated in our analysis, EST and mRNA evidence confirms that the exon is skipped in cDNA

libraries derived from choriocarcinomas (Table 1). The exon skipping pattern of UTRN exon 5 was of

particular interest, since this pattern was clearly brain specific (UTRN_5 panel). Further analysis showed that

this splicing pattern was uniform in forebrain and hindbrain regions, unlike the CI cassette exon (KH and PJG,

unpublished). An important caveat of these experiments is that because our sampling of human tissues was not

exhaustive, the true number of skipped exons could be significantly higher than the number confirmed by RT-

PCR.

The mouse orthologs of hnRNP H1 exon 5 and hnRNP H3 exon 3 were chosen for further experimental

confirmation of their exon skipping patterns (Figure 5C, panel: 1TAGG + GGGG exons). These splicing

patterns were determined using RNA derived from mouse heart and brain tissue, as well as from the mouse

C2C12 cell line. For each RNA sample, radioactive RT-PCR reactions were performed for a set of three serial

dilutions of the input RNA. These serial dilutions show good consistency in the % exon inclusion values for

each set of samples. Sequence alignments showed that the hnRNP H3 exon 3 of both human and mouse have

an additional exonic GGGG motif not found in the orthologous hnRNP H1 exon 5 sequences (Figure 5C,

bottom). Taken together with the results of Figure 4, which show the association of exonic GGGG motifs with
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exon skipping, the presence of the additional GGGG motif is consistent with the higher rate of exon skipping

observed for hnRNP H3 exon 3.

HnRNP H1 exon 8 and b-actin exon 2 served as control exons, since these exons do not contain UAGG

or GGGG motifs (Figure 5C, panel: 0 TAGG, 0 GGGG exons). As expected, the 0 TAGG, 0 GGGG control

exons were observed to be constitutive exons (100% exon inclusion).

The observation that a second UAGG is associated with increased strength of splicing silencing of the

CI cassette exon prompted us to examine several exons with multiple UAGGs that were identified in the

searches. From the dataset of 213 human exons containing UAGG and GGGG, 13 exons with ≥ 2 UAGGs

were identified, and from the dataset of 200 mouse exons containing UAGG and GGGG, 12 exons with ≥ 2

UAGGs were identified (Table 1). Exons within these datasets that have lengths typical for internal coding

exons (≤ 250 bases) were chosen for validation of their splicing patterns. RNA derived from mouse heart,

brain and C2C12 cells confirmed the skipping patterns of Hp1bp3 exon 2, NCOA2 exon 13 and trace levels

for MEN1 exon 8 (Figure 5C). Additional cDNA evidence was found in the databases in support of these

splicing patterns (Table 1). In the case of Hp1bp3, sequence alignments show that 2 TAGGs and the 5’ splice

site GGGG motif are conserved in the human and mouse orthologs, however, these exons are not included in

the Intersection dataset because these motifs reside in the first human exon of the transcript. Sequence

alignments for the more weakly skipped exons, NCOA2 exon 13 and MEN1 exon 8, show that one motif in the

pattern is missing or imperfect in each set of orthologs (Figure 5C, bottom).

4.2.4 DISCUSSION

A sequence motif code for exon skipping. Here we use molecular approaches to define a novel

pattern of UAGG and GGGG motifs required for silencing the GRIN1 CI cassette exon, and show that skipped

exons in the human and mouse genomes can be identified through bioinformatics searches that preserve the

sequence and spatial configuration of the silencing motifs. We also illustrate, using the CI cassette model

system, how the pattern of motifs determines the strength of exon silencing. While a single exonic UAGG or

5’ splice site GGGG motif is associated with weak exon skipping (up to 22%), two or more UAGGs in the
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exon together with the GGGG motif at the 5’ splice site specifies predominant exon skipping (up to 96%).

Bioinformatics searches show that the motif pattern is relatively uncommon, since only 0.2% of a large

database of human and mouse exons (~96,000) harbor the UAGG and GGGG motifs in combination.

Nonetheless, compared to exons lacking the motif pattern, a significantly higher frequency of exon skipping is

associated with 16 exons (≤ 250 nucleotides) in which the motif pattern is conserved in the human and mouse

orthologs (Figure 4). An imperfect correlation between the presence of the motif pattern and confirmed exon

skipping is not unexpected, since splicing enhancers may override the effects of UAGG and GGGG silencer

motifs. This may be due not only to the arrangement of ESE and ISE motifs in and around a target exon, but

also to tissue-specific variations in splicing factors.

Numerous ESE motifs have been functionally identified, but far less is known about sequence motifs

that control silencing. Evidence for the role of hnRNP A1-regulated exonic UAGG motifs has been previously

reported for a splicing silencing mechanism involving the K-SAM exon of human FGFR2 (Del Gatto et al.

1996), and related motifs have been reported in SMN2 exon 7 (UAGACA) (Kashima and Manley 2003), HIV

Tat exon 2 (UAGACU) (Si et al. 1997; Bilodeau et al. 2001), CD44 exon v5 (UAGACA) (Matter et al. 2000),

protein 4.1 exon 16 (Hou et al. 2002); c-src exon N1 (UAGGAGGAAGGU) (Rooke et al. 2003), and in the

hnRNP A1 transcript itself (UAG, and UAGAGU) (Chabot et al. 1997; Chabot et al. 2003). Taken together

with structural evidence that hnRNP A1 recognizes TAGG motifs directly (Ding et al. 1999), A1 is a likely

mediator of these silencing events. Our computational analysis extends these previous studies by showing that

the UAGG motif is significantly under-represented in constitutive exons and over-represented in skipped

exons genome wide, consistent with its role as an exonic splicing silencer. Moreover, these results show that

the GRIN1 CI cassette exon is subject to negative regulation by the co-expression of hnRNP A1. In contrast to

the previous studies, however, the GGGG motif adjacent to the 5’ splice site of the CI cassette exon is a novel

and integral component of the silencing mechanism. GGGG motifs are notably absent from the 5’ splice site

regions of all of the previously studied exons.

The silencing role of the GGGG motif adjacent to the CI cassette exon contrasts with enhancing roles

for guanosine rich intronic motifs as defined in other systems. The c-src transcript contains a complex intronic
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enhancer downstream of the neuron-specific NI exon in which two GGGGG tracts are required for normal

patterns of NI exon inclusion (Modafferi and Black 1997). G triplets are generally enriched in short

mammalian introns (Lim and Burge 2001), and these sequences have been shown to enhance inclusion of an

unusually small exon of cardiac troponin T (Carlo et al. 1996; Carlo et al. 2000), as well as additional exons of

human alpha globin, and chicken b-tropomyosin (Sirand-Pugnet et al. 1995) transcripts. Moreover, a disease-

related point mutation in an intronic guanosine cluster was recently found to disrupt the normal pattern of

splicing of the human pyruvate dehydrogenase E1a transcript (Mine et al. 2003). Whereas the position of the

GGGG motif is proximal to the U1 and U6 snRNA complementary regions of CI cassette 5’ splice site, the

guanosine rich intronic enhancers found in these previously studied transcripts are further downstream in the

intron. Our computational analysis shows that the position of intronic GGGG motifs is generally important,

since the frequency of exon skipping genome-wide is most closely associated with GGGG motifs when these

are located in the first 10 nucleotides of the intron.

Implications for tissue-specific splicing of the CI cassette exon. A full understanding of CI cassette

exon regulation will require explanations for the complex spatial and temporal variations observed in vivo. In

a previous study, we presented evidence that NAPOR/CUGBP2 enhances CI exon inclusion in the rat

forebrain. However, low levels of NAPOR/CUGBP2 cannot account for skipping of this exon in the

cerebellum, since the CI cassette exon is inherently a strong exon. Initial support for this idea came from the

observation that its splice sites match well to consensus sequences. Second, the experiments shown here

demonstrate that the combination of exonic UAGG and 5’ splice site GGGG motifs imposes silencing on an

otherwise strong exon, since the exon can be converted to a constitutive exon in the absence of

NAPOR/CUGBP2 when these motifs are destroyed by site-directed mutagenesis (splicing reporter T8; Figure

2). Thus, the mechanism described here provides a rationale for the tissue specific splicing patterns of the CI

cassette exon in the brain (Figure 6). Our results clearly demonstrate t #hat a wide range of control of CI

cassette exon inclusion can be mediated by different arrangements of UAGG and GGGG motifs together with

differential roles of hnRNP proteins. Such a model would allow for the intricate adjustments needed for
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biological control of splicing in the nervous system. Notably, the UAGG and GGGG motifs are conserved in

sequence and position in orthologous CI cassette exons of mouse, rat and human GRIN1 genes.

The results shown here suggest antagonistic roles for hnRNP A1 and hnRNP H proteins in the

regulation of CI cassette exon splicing. In this system, hnRNP A1 interacts directly with exonic UAGG, and

its co-expression induces exon skipping, whereas hnRNP H and F interact with the intronic GGGG motif, and

these factors induce exon inclusion. The downstream intron was previously shown to play a role in the

silencing mechanism (Zhang et al. 2002), and this idea is reinforced in the present study. A provocative

feature of this mechanism is the finding that the GGGG motif plays roles in both silencing and enhancement

of the CI cassette exon. Although the intronic GGGG motif and hnRNP A1 are involved in silencing, hnRNP

A1 does not crosslink directly to the GGGG motif (KH and PJG, unpublished). Thus, the GGGG motif may

interact with a distinct protein factor, or it may play a structural role in the silencing mechanism. Interestingly,

hnRNP H and F may principally function as anti-silencing factors in this mechanism by binding to the GGGG

motif in a way that disrupts its normal silencing function. Although these proteins bind more weakly to

UAGG motifs, they may have wider roles in counteracting the silencing function of the UAGG motifs.

Previous studies have identified hnRNP F and H as factors that recognize guanosine-rich intronic enhancer

motifs involved in the positive regulation of c-src N1 exon inclusion (Min et al. 1995; Chou et al. 1999). With

these exceptions, a recent computational study of neuron-specific exons found that GGG motifs were

generally lacking in the first 100 bases of the adjacent downstream intron (Brudno et al. 2001).

Overall, the results shown here are consistent with a model in which an extended silencing complex is

assembled by the recognition of motifs in the exon, 5’ splice site region and downstream intron. The

involvement of hnRNP A1 in this mechanism is consistent with previous demonstrations of the cooperative

binding of hnRNP A1 to pre-mRNA (Eperon et al. 2000; Zhu et al. 2001; Damgaard et al. 2002; Marchand et

al. 2002). The ratio of hnRNP A1 transcripts to hnRNP F and H transcripts shows considerable variations in

tissues in both human and mouse (Su et al. 2002), and we suggest that such variations may be involved in

directing tissue specificity of exons that are regulated by UAGG and GGGG motifs.
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Six ESE motifs within the CI cassette exon were also functionally identified in this study, and one of

these, an ASF/SF2 motif, overlaps with the position 93 UAGG silencer (Figure 6). We observe that UAGG

motifs are embedded in 32 ESE motifs reported in the ESEFinder database (Cartegni et al. 2003), but their

effects on exon inclusion have not previously been reported. In the case of the CI cassette exon, such an

arrangement of opposing splicing signals would predict that competition between ASF/SF2 and hnRNP A1

may provide additional options to fine-tune splicing patterns in different tissues or stages of development.

This builds upon the well-established models for competition between hnRNP A1 and SR proteins in

modulating 5’ splice site selection (Fu et al. 1992; Mayeda and Krainer 1992; Mayeda et al. 1993; Caceres et

al. 1994; Yang et al. 1994; Chabot et al. 2003).

Genome-wide analysis and implications for autoregulation of hnRNP H expression at the level of

splicing. Since the CI cassette exon skipping pattern of the GRIN1 transcript is brain-region specific, we

wished to determine the characteristics of exons with a similar arrangement of these motifs in the human and

mouse genomes. In one case, human utrophin exon 5 (UTRN), the exon-skipping pattern was found to be

brain-specific. Other transcripts harboring skipped exons that were identified by bioinformatics searches,

however, were found to be involved in a variety of cellular functions, such as RNA processing, chromatin

structure/function, cell signaling and regulation of transcription. These include, hnRNP H1 and H3 (HNRPH1;

HNRPH3), GRIPAP1, menin (MEN1), nuclear receptor co-activator 2 (NCOA2), heterochromatin protein 1

binding protein 3 (Hp1bp3), and an uncharacterized hypothalamus transcript (Table 1). Notably, a high

proportion of the exon-skipping patterns identified were found to be tissue-specific.

It was surprising to find exon 5 of hnRNP H1 and exon 3 of hnRNP H3 in the list of exons with

conserved UAGG and GGGG motifs, since hnRNP H proteins were found to crosslink specifically to the

GGGG motif adjacent to the CI cassette exon. These exon-skipping patterns were confirmed by RT-PCR

analysis in this study, and there is additional supporting cDNA and EST evidence in the databases. The RT-

PCR analysis shows that these exon-skipping patterns are relatively weak, but this is consistent with a motif

pattern containing a single exonic UAGG and 5’ splice site GGGG motif. Skipping of exon 5 of hnRNP H1 or

exon 3 of hnRNP H3 would result in a shift in the reading frame and introduction of a termination codon.
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Thus, silencing of these exons at the level of splicing is expected to reduce protein expression due either to

nonsense-mediated mRNA decay or premature termination of protein synthesis. The results shown here

suggest a model in which hnRNP H protein expression can be positively autoregulated at the level of splicing.

Under certain conditions, such a positive autoregulatory role for the hnRNP H proteins may provide a

buffering effect against negative control by hnRNP A1. Autoregulation by a negative feedback loop was

recently demonstrated for the splicing factor, PTB, which induces skipping of the eleventh exon of its cognate

pre-mRNA (Wollerton et al. 2004). Similarly, hnRNP A1, SRp20, SC35, TIA1 and TIAR proteins are all

involved in mechanisms that regulate the splicing patterns of their cognate transcripts (Blanchette and Chabot

1999; Sureau et al. 2001).

Prospects. If alternative splicing events are as prevalent as recent studies suggest (Modrek et al. 2001;

Okazaki et al. 2002; Xu et al. 2002; Johnson et al. 2003), it will be important to understand on a global scale

the biochemical language that determines tissue-specific patterns, and tunes these patterns in response to

physiological stimuli (Grabowski 1998; Black 2000). Understanding a set of elements that cooperate in

splicing silencing should allow the prediction of skipped exons from genomic sequence using bioinformatics

searches for exons with a similar arrangement of elements. Here we identify UAGG and GGGG motifs that

function in the silencing of the CI cassette exon, and which serve as patterns to recognize other skipped exons

in the human and mouse genomes. With the exception of the hnRNP H1 and H3 exons, these groups of exons

are otherwise unrelated in sequence outside of the UAGG and GGGG motifs. In the context of the CI cassette

exon, multiple arrangements of these motifs are compatible with silencing function, and these functionally

antagonize ESE motifs that are also shown here to regulate the CI cassette exon. Mechanisms of regulated

exon skipping are well understood in only a handful of cases, and previous studies have not addressed the

brain region-specific splicing switch that is characteristic of the CI cassette exon. Our results suggest that, in

general, it might be a useful strategy to use motif pattern searches to identify co-regulated exons together with

information about spatial constraints. The observation that UAGG and GGGG motif patterns are generally

predictive of exon skipping may also have implications for interpreting the effects of mutations underlying
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genetic disease. Future work will be needed to test the proposed autoregulatory functions of the hnRNP H

proteins, and to more fully understand the complex biochemical language responsible for the regulation and

coordination of splicing events genome wide.

4.2.5 MATERIALS AND METHODS

Plasmid construction and mutagenesis

All splicing reporter plasmids except for the experiments of Figure 3D were derived from the parent plasmid

wt (previously called E21wt), in which the CI cassette exon is flanked by full-length introns and adjacent

exons (Zhang et al. 2002). Site-directed mutations were introduced into the CI cassette exon or downstream

intron using the QuikChange® Site-Directed Mutagenesis Kit (Stratagene), and mutations were confirmed by

DNA sequencing. The splicing reporters wt and wt0 are identical except that wt has a point mutation at

position 78 (C to G change) of the CI exon, which creates a XhoI site. Chimeric splicing reporters were

derived from parent plasmid rGg25 (Zhang et al. 1996), in which the CI cassette exon and 164 and 103 base

pairs of the flanking introns (upstream and downstream, respectively) were introduced as a NotI-Bam HI

fragment. The full-length upstream intron was introduced by replacing the XbaI-NotI fragment of of rGgCI-

wto with the XbaI-NotI PCR  product containing GRIN1 exon 18 and 1092 base pairs of adjacent intron

(plasmid, rGgCI-up). The full-length downstream intron was introduced by replacing the BamHI-EcoRI

fragment of rGgCI-wto with the BamHI-EcoRI fragment containing GRIN1 exon 20 and 1810 base pairs of

adjacent upstream intron. All splicing reporter plasmids were constructed in a pBS vector followed by transfer

into the vector, pBPSVPA+ vector (Nasim et al. 1990), in which expression is driven by the SV40 promoter.

Expression plasmids for hnRNP proteins F, H, and A1 were generated by subcloning the complete open

reading frames into the BamHI site of pcDNA4/HisMax vector (Invitrogen). Open reading frames were

obtained from the following plasmids: hnRNP F from plasmid pFlag-F (Chou et al. 1999); hnRNP H/H’ from

pFlag-DSEF-1 (Bagga et al. 1998; Arhin et al. 2002); hnRNP A1 from plasmid Myc-A1 (Siomi and Dreyfuss

1995). All plasmid constructions were confirmed by DNA sequencing, and protein expression was verified by

Western blot analysis.
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Transient Expression and analysis of RNA splicing patterns

Cell growth, transfection and RT-PCR analysis was performed as described (Zhang et al. 2002). Briefly,

transfections were performed in 60 mm plates at ~70% cell confluency using Lipofectamine. Transfections

contained 3.5 µg of total plasmid DNA made up of splicing reporter plasmid with empty vector and/or protein

expression plasmid at DNA ratios as specified. After 48 hours of expression, cells were harvested, and total

RNA was purified, DNase treated, and ethanol precipitated. For analysis of splicing patterns, 1 µg of RNA

was reverse transcribed with random primers, and 1/20th of the reaction was then amplified for 20-24 PCR

cycles in a 10 µl reaction containing 0.2 µM specific primers, 2 units Taq polymerase, 0.2 mM dNTPs, 1 µCi

[a32P]dCTP in reaction buffer. Primers used to amplify the CI cassette exon included and skipped mRNA

products were specific for the flanking exons. Sequences in Ensembl were used to design primers for the

experiments of Figure 4. Primer sequences are available upon request. For gel analysis, 25% v/v of each PCR

reaction was resolved on 6% polyacrylamide, 5 M urea sequencing gels. Electrophoresis was performed for 1

hr at 30 W. Gel images and quantitation of results were obtained using a Fuji Medical Systems BAS-2500

phosphorimager and Science 2003 ImageGuage software.

Transcription and site-specific RNA labeling

Radioactive RNA substrates were prepared for UV crosslinking analysis as follows. RNAs containing the

GGGG motif were prepared by in vitro transcription in 25 µl reactions containing T7 RNA polymerase, 0.4

mM each of ATP, UTP, CTP, and 0.3 mM GTP plus 25 µCi [a32P]GTP, 0.5 mM GpppG and 0.1 µg DNA

template in standard T7 reaction buffer. DNA templates were prepared by annealing complementary

oligonucleotides with the top strand containing the T7 promoter sequence at its 5’ end, followed by the RNA

test sequence; bottom strands were complementary. RNAs were purifed after DNase treatment by Sephadex

G25 chromatography, phenol extraction and ethanol precipitation. Site-specific labeling of RNA substrates

containing the exonic UAGG motif was performed essentially as described (Moore and Query 2000).

Transcription (non-radioactive) of the downstream RNA half was performed as above except that reactions
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were larger (125 µl) and contained 2 mM guanosine instead of GpppG. After gel purification, the 5’ end of the

downstream half RNA was labeled by polynucleotide kinase with 25 pmol of the purified RNA and 25 pmol

of [g32P]ATP (6000 Ci/mmol). After removal of ATP by Sephadex G25 chromatography, the upstream and

downstream RNA halves were annealed to a complementary DNA splint covering 16 bases on either side of

the desired ligation position. Ligation reactions were performed in 10 µl reactions with 15 Weiss Units of T4

DNA ligase for 4 hours at 16°C, followed by DNase treatment and gel purification. The concentrations and

integrity of the RNA preparations were verified by electrophoresis on 10% polyacrylamide/7M urea gels.

UV crosslinking and immunoprecipitation analysis

UV crosslinking reactions (12.5 µl) were performed under splicing conditions as described (Ashiya and

Grabowski 1997) with 100,000 dpm radiolabeled RNA transcript and HeLa nuclear extract (4 mg/ml final

concentration). Following UV treatment, samples were digested to completion with RNAse A (1 mg/ml, 20

min at 30°C), and held on ice for immunoprecipitation or SDS-PAGE analysis. For immunoprecipitation

reactions, 25 µl of protein A beads (Sigma) were equilibrated in Buffer A (10 mM Tris/Hcl, pH 7.5, 100 mM

NaCl, and 1% TritonX100), and antibody was bound to the beads for 1 hr on ice (5 µl of R7263 or R7264 for

analysis of hnRNP F and H, respectively (Veraldi et al. 2001); or 1 µl of 9H10 for analysis of hnRNP A1).

Equivalent amounts (w/v) of rabbit preimmune serum or purified mouse IgG were used for control reactions.

Antibody beads were washed three times with Buffer A, and added to UV crosslinking reactions (25 µl) for 20

min on ice. Bound samples were washed four times with Buffer A, and centrifuged to separate pellet and

supernatant. Each reaction component was boiled in SDS sample buffer, and resolved on discontinuous 12.5%

polyacrylamide gels.

Generation of datasets and computational analysis

Human and mouse genes that were annotated as orthologs were obtained from Ensembl release 16

(www.ensembl.org). Human-mouse exons were aligned by BLAST (percent identity ≥85 and bit score ≥20),

and genes were checked for consistency in terms of orthologous exon order. A total of ~94,000 conserved
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human-mouse exons were retained for further analysis. In a separate analysis, ~14,600 internal exons in

human were designated as skipped exons based on stringent alignments of cDNA and EST sequences to

cDNA-verified genomic loci using the genome annotation script, GENOA (http://genes.mit.edu/genoa).

Mapping these exons to the conserved human-mouse Ensembl set identified 4,455 skipped, internal human

exons that are conserved in mouse. For the shuffling analysis, the first 30 bases and the last 60 bases of the

original sequences were removed prior to shuffling to simulate removal of the first and last exons. Each

sequence was shuffled 50 times using the Codon Shuffle program (Katz and Burge 2003). The fraction of

occurrence of each oligonucleotide, e.g. UAGG, relative to the number of occurrences of all possible

oligonucleotides of equal length, was compared to the fraction computed for the shuffled sets. The final fold

under-representation was computed by taking the mean of the fractions computed over the shuffled sets, and

dividing by the observed (true) fraction.
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FIGURE LEGENDS

Figure 1. Exonic UAGG and 5’ splice site GGGG motifs are required in combination for silencing of the

CI cassette exon.

(A) A GGGG splicing silencer motif at the 5’ splice site. Top: Sequence of the 5’ splice site region (5’ to 3’)

with exonic (uppercase) and intronic (lowercase) nucleotides is shown. Numbering is relative to the first

nucleotide of the intron. Arrowhead, 5’ splice site. A predicted SRp40 motif overlying the last seven bases of

the exon is indicated. Engineered mutations and names of splicing reporters are indicated immediately below

the affected nucleotides. Effect of mutations on the pattern of splicing is shown in a 5’ to 3’ arrangement (gel

panel and graph). All splicing reporter plasmids have a three-exon structure in which CI is the middle exon

(schematic: vertical bars, exons; horizontal lines, introns). Splicing reporter plasmids were expressed in vivo

in mouse C2C12 cells, and splicing patterns assayed by radioactive RT-PCR of cellular RNA harvested from

the cells. PCR primers are specific for the flanking exons. Results of multiple experiments are shown

graphically as the average % exon included product (y axis) for each splicing reporter construct (x axis).

(B) Analysis of ESE motifs: an exonic UAGG splicing silencer motif overlaps an ASF/SF2 motif. Sequence

of the CI exon (5’ to 3’) is shown, with engineered mutations (underscored) and names of splicing reporters

indicated immediately below the affected nucleotides (bold). Nucleotide numbering is relative to the first

nucleotide of the exon. Predicted ESE motifs for ASF/SF2 and SC35 are highlighted above the exonic

sequence as indicated in brackets. The UAGG motif required for silencing (boxed) is indicated below the

overlapping ASF/SF2 motif (asterisk). Effect of mutations on the in vivo pattern of splicing is shown in a 5’ to

3’ arrangement (gel panel and graph).

Figure 2. Effect of number and position of CI cassette exon splicing silencer motifs. Splicing reporters

were constructed with variations in the number and position of UAGG and/or GGGG motifs. Three sets of

schematics (boxed at left) illustrate the CI cassette exon and adjacent 5’ splice site region with position(s) of

exonic UAGG (vertical bars) and 5’ splice site GGGG (vertical stripe) motifs. Splicing reporter names are
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indicated at left. Vertical arrowhead, 5’ splice site. Each splicing reporter was generated by site-directed

mutagenesis from parent plasmid, wt0. Natural UAGG positions 51 and 93 represent the starting position of

the motif relative to the first base of the exon. Engineered UAGG positions 11, 76, and 100 are also indicated.

Sequence changes of the mutations are shown below. Representative splicing patterns are shown in gel panels

at right. Values for the average % exon inclusion are shown for each splicing reporter.

Figure 3. Identification and functional roles of protein factors involved in the recognition of GGGG and

UAGG motifs.

(A) Detection of protein binding to the 5’ splice site GGGG motif by UV crosslinking in HeLa nuclear

extract. Wild-type (cs1, 3h1) and mutant (cs3, 3h3) RNA substrates were internally labeled at guanosine

nucleotides; mutations are underscored. Pattern of UV crosslinking is shown following RNase digestion and

SDS-PAGE (lanes 1-4). Immunoprecipitation reactions (lanes 5-11) contained the 3h1 substrate together with

antibody specific for hnRNP F or H/H’; control samples contained preimmune rabbit serum. The positions of

hnRNP H/H’ and F (arrowheads) and protein molecular weight standards (kDa) are indicated. The hnRNP F

and H/H’ antibodies were a gift of C. Milcarek.

(B) UV crosslinking of exonic position 93 UAGG motif in HeLa nuclear extract. RNA substrates were

prepared with a single radiolabeled nucleotide as indicated by the asterisk; sequences are shown (bottom). The

wild-type (wt3) and mutant (mt3) substrates are identical except for the underscored mutation. The A1winner

substrate corresponds to the high affinity hnRNP A1 binding sequence previously identified by SELEX. Gel

panel shows the pellet (P), supernatant (S), and input (I) of the immunoprecipitation reactions following SDS-

PAGE. The position of hnRNP A1 is indicated (arrowhead). Monoclonal antibody, 9H10, was a gift of G.

Dreyfuss.

(C) Exon inclusion is enhanced by co-expression of hnRNP F or H. Gel panel shows splicing pattern resulting

from co-transfection of wild-type (wt) or mutant (5m2) splicing reporter with hnRNP F or H expression

plasmid; splicing reporters are identical to those shown in Figure 1A. Control samples were transfected with

empty vector; wedge indicates two levels (4 and 6 µg) of protein expression plasmid. Arrowhead, 5’ splice
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site. Immunoblot verification of transfected protein expression (bottom panel): nuclear extracts from

transfected cells were separated by SDS-PAGE, transferred to nylon membrane, and developed with an

antibody specific for the Xpress tag at the N-terminus of each pcDNA-protein sample. Graph shows fold

effect on exon inclusion as calculated by normalizing the % exon inclusion value for each test sample to that

of the pcDNA control (lane 1 for wt; lane 6 for 5m2). Raw % exon inclusion values are shown.

(D) Silencing effect of hnRNP A1 requires the intact 5’ splice site GGGG motif and full-length downstream

intron. Structures of chimeric splicing reporters are shown in which the CI cassette exon and intron flanks

were introduced into an unrelated splicing reporter containing sequences from the GABAA receptor g2

transcript; rGgCI-wt0 (both introns truncated); -up (full-length upstream intron, truncated downstream intron);

-dn (truncated upstream intron, full-length downstream intron). Numbers above indicate length of each intron

segment in nucleotides. Arrowhead, 5’ splice site. The splicing reporters rGgCI- dn5m2 and dn5m4 contain

the full length downstream intron with 5’ splice site mutations of Figure 1A. Gel panel shows splicing pattern

resulting from co-transfection of splicing reporter with hnRNP A1 expression plasmid or vector control.

Immunoblot verification of transfected protein expression (bottom panel), and graph showing fold effect on

exon inclusion is as described in (C).

Figure 4. Computational analysis of UAGG and GGGG motif pattern in skipped exons of the human

genome.

(Top) Schematic illustrates the computational sorting of a large dataset of human and mouse exons, based on

the presence and absence of various combinations of splicing silencer motifs, followed by determination of

the number of confirmed skipped exons in each of the sorted datasets. Whereas the exonic motif(s) was

allowed at any position within the exon, the position of the 5’ splice site motif was limited to the first 10 bases

of the intron. Exon lengths were constrained to ≤ 250 nucleotides. (Bottom) Table shows for each motif

pattern, the number of exons in the group (parentheses) and the percentage of confirmed skipped exons within

that group (%). Searches were performed for the original motif combination found in the CI cassette exon and

5’ splice site region, as well as for these individual motifs (motifs highlighted in bold). Reciprocal and mixed
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combinations of these sequence motifs were also analyzed. (Middle) Graph illustrates the percentage of

confirmed skipped exons for each motif pattern according to the data provided below. Exonic UAGG and 5’

splice site GGGG motif pattern (§) and 5’ splice site GGGG motif alone (◊).

Figure 5. Genome-wide analysis of UAGG and GGGG silencing motifs: identification of exons and

validation of exon-skipping patterns.

(A) Bioinformatics searches. A database of 96,089 orthologous human and mouse exons was searched for

TAGG located anywhere in the exon and GGGG in the first 10 bases of the intron. Venn diagrams indicate the

number of exons with either or both sequence motifs in the human or mouse subsets of the database (Human

and Mouse subset, respectively). The number of exons (19), in which UAGG and GGGG silencer motifs are

conserved in orthologous human and mouse exons, is also shown (Intersection). The motif patterns are

illustrated in the context of the exon (uppercase) and 5’ splice site region (lowercase) for 12 examples from

the Intersection dataset (human sequences are shown). Colon indicates 5’ splice site. The conserved TAGG

and GGGG motifs are highlighted in red to illustrate natural variations in their arrangements. Gene name

(HUGO ID) and exon number within the gene are indicated at far right. In one case, the Genbank # is given

for an uncharacterized transcript.

(B) RT-PCR confirmation of exon skipping patterns in human tissues. Twelve orthologous exons (≤ 250

nucleotides) were selected for experimental validation in a panel of 8 human tissues. These exons are derived

from the Intersection dataset in which conserved TAGG and GGGG motifs are present in combination in the

human and mouse orthologous exons. The 12 gel panels correspond to the examples listed at the bottom of

part (A); additional cDNA and EST evidence for these skipping events are summarized in Table 1. Specific

primer pairs were designed for each test exon to amplify the exon-included (<<) and exon skipped (<)

products by RT-PCR. Gel panels show the products of reactions for one test exon resolved on agarose gels in

the arrangement given in the inset. Gene name, exon number, and Ensembl number is provided above each gel

panel. The far left and right lanes of each gel panel contain 1kb DNA molecular weight markers.
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(C) RT-PCR analysis of splicing patterns in mouse tissues. Splicing patterns were determined by radioactive

RT-PCR for selected mouse exons: Control reactions include b-actin exon 2 and hnRNP H1 exon 8, which

were selected due to the absence of the silencing motifs in these exons (Panel: 0 TAGG, 0 GGGG exons).

HnRNP H1 exon 5, and hnRNP H3 exon 3 are representative of the 1 TAGG and GGGG motif pattern (Panel:

1 TAGG + GGGG exons). Hp1bp3 exon 2, GRIN1 CI cassette exon, and NCOA2 exon 13, and are examples

of tissue-specific exon skipping associated with 2 TAGG and GGGG motif pattern (Panel: 2 TAGG + GGGG

exons). MEN1 exon 8 is also shown. Each gel panel shows splicing patterns tested in RNA samples from

mouse heart and brain tissue and mouse C2C12 cells. Gene name, exon number, and Ensembl number are

provided above each gel panel. Three Brackets represent the average % exon inclusion and standard deviation

for each set of serial dilutions; raw values are given immediately below each lane. Sequence alignments of the

corresponding human and mouse orthologs illustrate the patterns of silencer motifs.

Figure 6. GRINI CI cassette exon: splicing regulatory motifs and model for tissue-specificity.

(Top) Schematic of intron/exon structure and prominent splicing patterns observed in the forebrain (top) and

hindbrain (bottom) of rat brain. (Bottom) Summary of splicing regulatory motifs functionally defined in this

study is depicted on an expanded version of the CI cassette exon (yellow). ESE and hnRNP H/H’ binding

motifs are indicated above the exon. Also shown are nucleotides complementary to U1 snRNA and the

interaction of the positive regulator NAPOR/CUGBP2 with the downstream intron [‡, as determined in

(Zhang et al. 2002)]. UAGG and GGGG splicing silencing motifs defined in this study are highlighted in red.

The working model for splicing silencing, based on the results shown here, proposes that exon skipping is

mediated by multiple weak interactions of hnRNP A1 with two exonic UAGGs, and a 5’ splice site GGGG

motif. An intronic region downstream of the GGGG motif is also functionally involved, but the precise

sequence motif was not defined. Interesting characteristics of this mechanism include the dual functionality of

the GGGG motif at the 5’ splice site, which functions primarily as a silencer in C2C12 cells, or as an anti-

silencer in conjunction with high expression of hnRNP H or F protein. It is also of interest that the position 93

UAGG silencer is embedded in an ASF/SF2 motif. Tissue-specific exon inclusion is proposed to occur by



240

multiple pathways: by increased ratios of hnRNP H, hnRNP F or ASF/SF2 relative to hnRNP A1, by the

expression of the positive regulator of CI exon inclusion, NAPOR/CUGBP2.
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Table 1. Human and mouse orthologous exons containing TAGG and GGGG motif patterns
Ensembl
ID_Exon#:
Human
(ENSG00000-)
Mouse
(ENSMUSG00000-
)

HUGO ID or
Genbank
accession #

Exon
length
(bp)

#
TAGG
motifs

5’ splice site
sequence:
Human
Mouse

RT-PCR
evidence
for exon
skipping
(this
study)

cDNA
and/or EST
evidence for
exon
skipping*

Intersection dataset
1 158195_4

028868_4
WASF2 118 1

1
AGGgtgaggggaa
AGGgtgaggggaa

negative No info

2 169045_5
007850_5

HNRPH1 139 1
1

CAGgtggggatgg
CAGgtggggatgg

skipped AW579178,
and many
others

3 096746_3
020069_2

HNRPH3
NM_012207

139 1
1

CAGgtggggatgg
CAGgtggggatgg

skipped BE747312
BM916242
BQ882744
AW878310

4 176884_19
026959_19

GRIN1 111 2
2

ACGgtaaggggga
ACGgtaaggggaa

skipped See below

5 136044_8
020263_8

NM_018171,
DIP13BETA

147 1
1

CAGgtaggggagt
CAGgtaggggatg

negative No info

6 158865_8
030769_9

NM_052944,
KST1

81 1
1

ACAgtaagtgggg
ACAgtaagtgggg

negative No info

7 168453_3
022096_3

HR 793 1
3

AAGgtaagggggc
GAGgtaagggggt

ND BX341278

8 068400_2
031153_13

GRIPAP1 96 1
1

AAGgtaggggaac
AAGgtggggcatc

skipped No info

9 136478_8
040548_8

NM_018469
Uncharacteriz
ed

133 1
1

AGGgtaaggggct
AGGgtaaggggct

skipped No info

10 108592_17
020706_18

FTSJ3 100 1
1

CCGgtaaaggggc
CCGgtaaggggca

negative No info

11 152818_5
019820_6

UTRN 93 1
1

CAGgtggggaaat
CAGgtggggacct

skipped No info

12 158887_4
005678_4

MPZ
ENST0000028
9928

136 1
1

CAGgtaaggggcg
CAGgtaaggggcg

negative No info

13 181045_5
039908_6

SCL26A11 143 1
1

CAGgtgaggggcc
CAGgtgaggggac

negative No info

14 147255_16
031111_15

IGSF1 288 1
1

CAGgtaaggggaa
CTGgtaaggggat

ND No info

15 173957_7
037336_6

No description 91 1
1

CAGgtatggggtt
CAGgtatgggggt

ND No info

16 106404_2
001739_2

CLDN15 165 1
1

CCGgtaactgggg
CTGgtaatggggg

ND BU164601
AJ245738

17 150165_4
021950_5

ANXA8
NM_001630

91 1
1

AAGgtaaggggtg
AAGgtaaggggtt

ND BC008813
BE902538
BE902353
BE900246

18 179593_2 ALOX15B 220 1 CAGgtgaggggcg ND No info
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020891_2 NM_001141 1 CAGgtgaggggac
19 165816_11

025082_12
NA 552 2

1
GAGgtgagtgggg
TGAgtggggataa

ND No info

Human subset
h1 176884_19 GRIN1 111 2 ACGgtaaggggga skipped L13266,

AF015730,
L05666,
L13267,
AW900783

h2 097054_10 ABCA4 117 2 AGAgtaagggggg negative No info
h3 140396_13 NCOA2 207 2 CAGgtaaggggtc skipped No info
h4 099308_21 O60307 245 2 CTGgtaagtgggg negative No info
h5 135709_2 Y513_HUMA

N
501 2 AGGgtaaggggcc ND No info

h6 165816_11 ENST
00000298715

552 2 GAGgtgagtgggg ND No info

h7 130283_7 LASS1 637 2 GCGgtgagtgggg ND No info
h8 007565_3 DAXX 832 2 CAGgtagggggtt ND -
h9 185133_2 PIB5PA 1166 2 CCGgtgagggggc ND -
h10 111077_18 TENC1 1212 3 CAGgtgaggggca ND -
h11 142102_4 Q8TEG9 1418 2 CAGgtgaggggac ND -
h12 135835_5 Q9HCF8 1556 2 ATGgtaaggggct ND -
h13 138080_4 EMILIN1 1929 2 CTGgtgaggggac ND -
Mouse subset
m1 026959_19 GRIN1 111 2 ACGgtaaggggaa skipped CD363997
m2 023938_18 No description 123 2 GAGgtcaggggcc ND No info
m3 024947_8 MEN1_MOUS

E
165 2 CAGgtgagagggg skipped BC036287

m4 026791_8 GRTR8_MOU
SE

171 2 CTGgtaaagggga ND BY347810,
BY349516

m5 028759_2 Hp1bp3 198 3 GAGgtaggggctg skipped AK075725,
AK043260

m6 005886_13 NCOA2 207 2 CAGgtaagggctc skipped BC053387
m7 007021_2 NM_011522 238 2 CAGgtgggcgggg negative No info
m8 015852_2 NM_030707 208 2 AAGgtaggggact ND No info
m9 024112_9 CCAH_MOUS

E
440 2 CAGgtaggggtgt ND No info

m10 028782_26 NM_173071 620 2 GAGgtgaggggct ND No info
m11 022096_4 HAIR_MOUS

E
781 2 GAGgtaagggggt ND No info

m12 052325_5 MAPB_MOUS
E

6490 2 CAGgtaggtgggg ND No info

Entries 1-19 correspond to the Intersection dataset of Figure 5A, human (top), mouse (bottom); human subset,
h1-h13, and mouse subset, m1-m12, are also shown. ND, not determined.
*(http://genome.ucsc.edu; http://www.ncbi.nlm.nih.gov/)
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Chapter 5.

Conclusions and Perspectives

5.1 Perspectives

In summary, the major accomplishments of this thesis are as follows: (i) the

introduction of a general approach to incorporating adjacent and non-adjacent local

dependencies in modeling sequence motifs, with applications to RNA splicing signals;

(ii) the first large-scale comparative bioinformatics study of similarities and differences

in the cis and trans elements involved with constitutive splicing across vertebrates, which

resulted in identifying substantial differences in the regulation of splicing in Fugu versus

mammalian introns, as well as developing the first intron classifier which can be used to

design spliceability into Fugu introns in mammalian cell lines; (iii) a rigorous study of

the variation in alternative splicing across various human tissues which incorporates the

gene expression of trans factors, and the identification of tissue-specific cis elements; (iv)

the development of a novel method for large-scale detection of conserved alternative

splicing events in mammals; and (v) the identification of a combination of motifs that are

predictive of exon-skipping in human and mouse.

Aside from the specific achievements described above, each of the works mentioned

above has led or could lead to various independent lines of research. For example, in
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identifying splicing cis-regulatory elements, such as ESEs and ISEs in multiple

vertebrates, a list of conserved ESEs (1) and potential ISEs in vertebrates have been

generated.  A recent study by Fairbrother et al (2) utilized the predicted ESEs conserved

in mammals and fish, that were generated in this thesis, and showed that single nucleotide

polymorphisms (SNPs) in human genes avoid candidate ESEs that are conserved in

multiple vertebrates with higher frequency than those identified in single genome studies,

supporting the validity of our methods.  In addition, the candidate vertebrate ISEs can be

experimentally tested by tranfecting mutiple cell lines with constructs which contain the

candidate intronic cis elements in a weak exon context.

In our survey of the variation of alternative splicing in multiple tissues, tissue-specific

cis-regulatory elements for splicing have also been identified, which requires further

experimental validation.  Furthermore, the methods introduced for measuring

dissimilarity between isoforms can be improved on and applied also to data from non

EST-based experimental methods for quantifying alternative splicing, such as splicing-

specific microarrays (3).

A promising direction of further research lies in the conserved alternative spliced exons

identified, which are evolutionarily preserved and likely to be biologically important.  A

host of questions can be raised of this set of alternatively spliced exons.  For example, is

alternative splicing affected by changes in the external physiological conditions, such as

stress (for example UV damage and cell starvation)?  What is the impact on alternative

splicing from administrating common pharmacological molecular interventions such as

protease inhibitors and inflammation drugs to human cell lines?  Can we identify
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connections between cancer and alternative splicing by assaying cancer cell lines and

tissues? Can we test the effects of microRNAs on the fate of alternative splicing

regulation as several splicing factors are potentially regulated by microRNAs (4)? Can

we address the connection between alternative splicing and nonsense mediated mRNA

decay (NMD) (5, 6) by suppressing this mechanism chemically or using a human cell

lines with specific gene knock downs?  Can we identify species-specific alternative

splicing, distinguished from ACEScan[+] exons? In addition, candidate conserved cis-

regulatory elements that were utilized as important features can be experimentally

verified by mutations to a construct containing the alternatively spliced exon, or by

insertion of the element into a constitutive exon.

5.2 Current splicing-sensitive technologies

To address several of the questions above, large-scale sensitive methods and resources

for assaying alternative splicing have to be tapped, which are briefly covered in this

section.  Microarray technologies allow the levels of many different RNA or DNA

sequences to be assayed simultaneously, but existing methods are not sensitive or specific

enough to study alternative splicing (AS).  Long probes used in cDNA arrays are not

designed to distinguish subtle nucleotide-level differences that can take place due to the

alternative use of a splice site, resulting in the insertion of a dozen extra bases, for

example,  oligonucleotide-based arrays, including exon arrays, tiling arrays and exon-

exon junction arrays (7, 8) allow the detection of mRNA isoforms, but complications

arise due to target amplification methods being biased towards 3’UTR sequences, and

thus require larger amounts of RNA to preserve the true ratios of isoforms.  Nevertheless,

oligonucleotide arrays of exon-exon junction probes can be useful for guiding reverse
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transcriptase-polymerase chain reaction (RT-PCR) and sequence validation efforts to

identify alternative splicing events (3, 9).

In addition to oligonucleotide exon-exon microarray technologies, Church and colleagues

have introduced “digital polony exon profiling”(10), and Fu and colleagues have

introduced a method called RASL (RNA-mediated annealing, selection and ligation)

using fiber-optic arrays (11) to monitor alternative splicing events, both requiring

significantly smaller amounts of RNA.  These two methods (summarized in detail in the

Table below) will be useful in measuring complicated combinatorial alternative splicing

events quantitatively with small RNA samples.

Finally, unlike the above methods, differential analysis of transcripts with alternative

splicing (DATAS) (12) has a major advantage over the other technologies in that it

allows the systematic generation of libraries of alternatively spliced isoforms without

prior knowledge of the event.  This method is based on hybridizing mRNA from one

condition/cell line to cDNA from another condition/cell-line, and digesting looped-out

RNA sequences, which would be indicative of alternative splicing of the mRNA in one

condition/cell line, but not the other.  This method allows the comparison of full-length

RNA transcripts between two biological samples to extract novel alternative exons and

introns between these transcripts.
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Table 1.  Comparison of analytical methods for profiling alternative splicing events.

Oligonucleotide
exon-exon
junction arrays
(3, 9, 13)

Fiber-optic
arrays (RASL)
(11)

Digital polony
exon profiling
(10)

DATAS (12)

Summary of
procedure

Oligonucleotide
probes designed
across exon-exon
junctions.  RNA is
amplified and
labeled using Cy5-
Cy3 dyes and
hybridized to the
microarray.  The
intensity of pairs of
junction probes in
different tissues
and cell lines
indicate the
presence of
alternative splicing.
Candidate
alternatively
spliced exons are
reverse-transcribed,
and sequence
validated.

Self-assembled
bead array is
formed when
microspheres are
loaded onto the tip
of eched fiber-
optic bundles.
Each bead contains
a specific
oligonucleotide
sequence
(address). A
charge-coupled
device camera at
the opposite end of
a fiber bundle
records
hybridization
signals.  Signals
from multiple
beads carrying
identical
addressees on the
array are combined
to derive final
signal output.

Parallel solid-
phase
amplification of
DNA molecules
via PCR in an
acryl-amide gel
attached to the
surface of a glass
microscope slide
forms spherical
colonies of DNA,
called polonies.
The products are
linked to the gel
and serves as a
template for probe
hybridization
and/or single base
extensions.
Combinations of
spectrally distinct
fluorophores
and/or repeated
cycles of probing
allows the
studying of
combinatorial
patterns of AS.

DATAS is
designed to
capture mRNA
splice variants that
distinguish
different
conditions.  cDNA
from one
population is
hybridized with
mRNA from the
second population.
Magnetic
streptavidin beads
are used to isolate
the biotinylated
cDNA.  Hybrids
are treated with
RNAse H to
release mRNA that
do not hybridize to
the heteroduplex.
Release mRNAs
are isolated,
reverse
transcribed, cloned
and collected into
libraries.

Sequence
knowledge of AS
event

Oligonucleotide
probes are
designed
specifically across
exon-junctions.

DNA oligos
complementary to
alternative exons
are linked to an
address that can
hybridize to its
complementary
strand on the bead
array, and only
juxtaposed oligos
(by splicing) are
ligated, and
amplified using
universal primers

Cy3 and Cy5
labeled exon
probes are required
for detection of
AS.

Not required
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universal primers
Advantages Scale of method is

currently the
largest.
Can potentially
address complex
combinatorial AS.

Small numbers of
cells (10) required,
suitable for
neuronal and
immune system
characterization of
AS.

Quantification of
individual mRNA
isoforms is
sensitive and
accurate as each
polony arise from
a single molecule.
Single based
extensions
combined with
polonies allows the
correlation of
single nucleotide
changes (SNCs)
with splicing
defects.
Can address
complex
combinatorial AS.

No sequence
knowledge
required.

Disadvantages Relies on sequence
knowledge of AS.
Suffers from biases
of conventional
microarray
platforms.
Cannot be used to
study small number
of cells.

Relies on sequence
knowledge of AS.

Currently, multi-
plexing is limited,
but can be
extended by
quantum-dot
labeled probes.
Relies on sequence
knowledge of AS.

Have to be
performed in pairs
of groups (cancer
versus normal).
Difficult to use to
study complex
combinatorial AS.
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